首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,现从甲袋中任取2球放入乙球,再从乙袋中取一球,求取出球是白球的概率p;如果已知从乙袋中取出的球是白球,求从甲袋中取出的球是一白一黑的概率q.
甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,现从甲袋中任取2球放入乙球,再从乙袋中取一球,求取出球是白球的概率p;如果已知从乙袋中取出的球是白球,求从甲袋中取出的球是一白一黑的概率q.
admin
2018-06-14
53
问题
甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,现从甲袋中任取2球放入乙球,再从乙袋中取一球,求取出球是白球的概率p;如果已知从乙袋中取出的球是白球,求从甲袋中取出的球是一白一黑的概率q.
选项
答案
记A=“从乙袋中取出一球为白球”,试验理解为:一次从甲袋中取出两球,记B
i
=“从甲袋中取出的2球中恰有i个白球”,i=0,1,2,则B
0
,B
1
,B
2
是一完备事件组,A=AB
0
∪AB
1
∪AB
2
,由全概率公式 [*]
解析
显然A=“从乙袋中任取一球是白球”的概率P与其前提条件:“从甲袋取出2球颜色”有关.我们自然想到将A对其前提条件的所有可能情况作全集分解,应用全概公式计算P(A)=p;而概率q是在“结果A”已发生条件下,追溯“原因”的概率,故要应用贝叶斯公式.
转载请注明原文地址:https://kaotiyun.com/show/b1W4777K
0
考研数学三
相关试题推荐
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=
求微分方程y2dx+(2xy+y2)dy=0的通解.
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)一f(y)|≤|arctanx一arctany|,又f(1)=0,证明:|∫01f(x)dx|≤.
求下列极限:
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表出.若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
设A=(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
随机试题
前列腺肉瘤很少见,起源于生肾索的中胚层组织,包括中肾管和中肾旁管的终末部分,是一种极度恶性的肿瘤。前列腺肉瘤的病理变化正确的是:
国防科学技术研究的重要项目、成果属于()。
患者,男性,40岁,连日来在高温下工作。今日下午感头痛头晕,继而体温升高达40℃,出现颜面潮红,皮肤干燥无汗,神志模糊,急诊入院。给患者采取的护理措施中,不妥的是
目前,我国零数委托适用于()。
优先股股息在当年未足额分派时,能在以后年度补发的优先股,称为()
背景说明:你是宏远公司行政秘书高叶,下面是行政经理苏明需要你完成的工作几项任务。
教师因对学生的期待和热望而表现出更多的注意、关心和亲近,从而对学生的学习成绩产生极大影响,这是()。
未成年犯禁闭期间,每天放风两次,每次不少于()。
纯收入
FiveGoldenRulesforGivingAcademicPresentationsAcademicpresentationsaredifferentfromtheclassroompresentationsthats
最新回复
(
0
)