首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设一金属球体内各点处的温度与该点离球心的距离成反比,证明:球体内任意(异于球心的)一点处沿着指向球心的方向温度上升得最快.
设一金属球体内各点处的温度与该点离球心的距离成反比,证明:球体内任意(异于球心的)一点处沿着指向球心的方向温度上升得最快.
admin
2017-10-19
66
问题
设一金属球体内各点处的温度与该点离球心的距离成反比,证明:球体内任意(异于球心的)一点处沿着指向球心的方向温度上升得最快.
选项
答案
以球心为坐标原点O取坐标系,设温度为T,依题意知对球体内任意一点P(x,y,z),其温度为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/b4H4777K
0
考研数学三
相关试题推荐
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(a),f’(b)}≤μ≤max{f’(a),f’(b)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4)是齐次方程组A*x=0的基础解系.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aβ1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
n维列向量组α1,…,αn—1线性无关,且与非零向量β正交.证明:α1,…,αn—1,β线性无关.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得∈f’(ξ)一f(ξ)=f(2)一2f(1).
随机试题
A.氨苄西林B.苯唑西林C.羧苄西林D.青霉素E.苄星青霉素预防溶血性链球菌感染
设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。
背景资料某二级公路位于平原区,路基宽10m,采用沥青混凝土路面,其中K3+460~K3+550段位于水田路段。路堤填筑高度5~6m,填料为砂性土。该路段的软基处理方案如下图所示。工程开工前,在建设单位的主持下,由设计单位向施工单位交桩,设计单位向施工
监事会应当包括股东代表和适当比例的公司职工代表,其中职工代表的比例不得低于(),具体比例由公司章程规定。
企业采用非预提方式核算短期借款利息时,不会涉及的科目是()。
下列要素中,注册会计师在评价被审计单位控制环境时应当考虑的有()。
急诊室收治了一名从高处跌落而昏迷不醒的5岁男孩,在询问病史时,男孩的母亲语无伦次,护士发现男孩身上有多处旧伤,便请来了社会工作者。社会工作者走访了男孩父母、亲戚、邻居、居委会和幼儿园,社会工作者此举的目的是()。
公安机关在办理刑事案件中,必须重证据、重调查研究、重视犯罪嫌疑人的口供。()
我们坐火车或者汽车的时候,从车窗望出去,会看到近处的物体迅速地往相反方向移动,远处的物体缓慢地往相同方向移动,这种现象是(),
下列关于BGP协议的描述中,错误的是()。
最新回复
(
0
)