首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(aij)不可逆,a12代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A伴随矩阵,则方程组A*x=0通解为
设4阶矩阵A=(aij)不可逆,a12代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A伴随矩阵,则方程组A*x=0通解为
admin
2020-05-07
72
问题
设4阶矩阵A=(a
ij
)不可逆,a
12
代数余子式A
12
≠0,a
1
,a
2
,a
3
,a
4
为矩阵A的列向量组,A
*
为A伴随矩阵,则方程组A
*
x=0通解为
选项
A、x=k
1
a
1
+k
2
a
2
+k
3
a
3
,其中k
1
,k
2
,k
3
为任意常数
B、x=k
1
a
1
+k
2
a
2
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
C、x=k
1
a
1
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
D、x=k
1
a
2
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
答案
C
解析
由于A
12
≠0,r(A)=3,所以r(A
*
)=1,成基础解系.由
AA
*
=(a
1
,a
2
,a
3
,a
4
)
=0
可知,A
11
a
1
+A
12
a
2
+A
13
a
3
+A
14
a
4
=0,因为A
12
≠0,因此a
2
可由a
1
,a
3
,a
4
线性表示,
故a
1
,a
3
,a
4
线性无关.因为r(A)一r(a
1
,a
2
,a
3
,a
4
)=3,因此a
1
,a
3
,a
4
为基础解系,故应选C.
又因为A
*
A=|A|E=O,A的每一列a
1
,a
2
,a
3
,a
4
是A
*
x=0的解向量.只要找到是A
*
x=0的3个无关解就构成基础解系.
转载请注明原文地址:https://kaotiyun.com/show/b984777K
0
考研数学二
相关试题推荐
[2012年]设区域D由曲线y=sinx,x=±π/2,y=1围成,则(xy5一1)dxdy=().
[2007年]设f(x)是区间[0,π/4]上的单调可导函数,且满足∫0f(x)f-1(t)dt=∫0xtdt其中f-1是f的反函数,求f(x).
证明:若单调数列{xn}有一收敛的子数列,则数列{xn}必收敛.
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α1,α2,α3线性无关.
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明:α1,α2,…αn—1,ξ1线性无关。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。求Anβ。
设A为n阶矩阵且,r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
设f(χ)=(Ⅰ)若f(χ)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(χ)有何间断点,并指出它的类型.
设f(χ)=,求f(χ)的间断点并判断其类型.
设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(ex2一1)高阶的无穷小,则正整数n等于()
随机试题
较复杂的箱体零件切削加工主要技术要求有()。
创新
患儿,女性,7岁,上中切牙替换后中间有缝隙,原因不可能是
患者,男性,严重创伤后,血压下降,脉搏细速,面色苍白。治疗应重点注意
按《建筑抗震设计规范》(GB50011—2001),下列关于特征周期的叙述中,()是正确的。
项目在寿命期内各期实际发生的现金流入或流出序列以及它们的差(净现金流)。可概述这句话的是()。
我国目前编制固定资产投资价格指数所用的权重为()。
瑞典皇家科学院2014年2月13日宣布,一位华人科学家获得2014年度罗夫·肖克奖中的数学奖项,以奖励他在无穷多对孪生素数研究上取得的重大突破。这也是该奖项设立21年来首次颁给华裔学者。这位华人科学家是
Parentsofchildrenwhohappilyeatwhat’sputinfrontofthemmightassumetheirkidsarewellnourished.Buttwonewstudies
F
最新回复
(
0
)