首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(aij)不可逆,a12代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A伴随矩阵,则方程组A*x=0通解为
设4阶矩阵A=(aij)不可逆,a12代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A伴随矩阵,则方程组A*x=0通解为
admin
2020-05-07
40
问题
设4阶矩阵A=(a
ij
)不可逆,a
12
代数余子式A
12
≠0,a
1
,a
2
,a
3
,a
4
为矩阵A的列向量组,A
*
为A伴随矩阵,则方程组A
*
x=0通解为
选项
A、x=k
1
a
1
+k
2
a
2
+k
3
a
3
,其中k
1
,k
2
,k
3
为任意常数
B、x=k
1
a
1
+k
2
a
2
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
C、x=k
1
a
1
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
D、x=k
1
a
2
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
答案
C
解析
由于A
12
≠0,r(A)=3,所以r(A
*
)=1,成基础解系.由
AA
*
=(a
1
,a
2
,a
3
,a
4
)
=0
可知,A
11
a
1
+A
12
a
2
+A
13
a
3
+A
14
a
4
=0,因为A
12
≠0,因此a
2
可由a
1
,a
3
,a
4
线性表示,
故a
1
,a
3
,a
4
线性无关.因为r(A)一r(a
1
,a
2
,a
3
,a
4
)=3,因此a
1
,a
3
,a
4
为基础解系,故应选C.
又因为A
*
A=|A|E=O,A的每一列a
1
,a
2
,a
3
,a
4
是A
*
x=0的解向量.只要找到是A
*
x=0的3个无关解就构成基础解系.
转载请注明原文地址:https://kaotiyun.com/show/b984777K
0
考研数学二
相关试题推荐
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
[2004年]某种飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开降落伞以增大阻力使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后飞机所受的阻力与飞机的速度成正比(比例
[2005年]用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"一xy′+y=0,并求其满足y∣x=0=1,y′∣x=0=2的特解.
[2004年]微分方程y"+y=x2+1+sinx的特解形式可设为().
某商品给量Q对价格P的函数关系为Q=Q(P)=a+b×cp(c≠1)已知当P=2时,Q=30;Q=50;P=4时,Q=90,求供给量Q对价格P的函数关系.
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f’(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在内有唯一的实根.
求下列平面曲线的弧长:(Ⅰ)曲线9y2=χ(χ-3)2(y≥0)位于χ=0到χ=3之间的一段;(Ⅱ)曲线=l(a>0,b>0,a≠b).
设f(x)为连续函数,且x2+y2+z2=
设φ连续,且x2+y2+z2=∫xyφ(x+y-t)dt,求2z.
随机试题
对于认知风格属于场独立型的学生,下列方法适合场独立型学生的有()
在Word2010中,若需插入目录,应选择【】
Therewasalittleboyvisitinghisgrandparentsontheirfarm.Hewasgivenaslingshot(弹弓)toplaywith,outinthewoods.He【C
凝胶过滤法主要用于蛋白和核酸分离,又称为分子筛层析法,其常用介质是
蛙式打夯机作业时,电缆线不得张拉过紧,应保证有()m的余量,递线人应按夯实路线随时调整。
有助于改善商业银行声誉风险管理的操作实践有()。
目前,在我国义务教育和基础教育是同一个概念。
弗拉门戈舞是歌、舞和吉他音乐三位一体的艺术。一般认为它是从北印度岀发的吉卜赛人,几经跋涉来到西班牙南部,带来的一种融合印度、阿拉伯、犹太、拜占庭及西班牙南部元素的乐舞。因是被居住在西班牙安达鲁西亚的吉卜赛人创立传承,所以被称为弗拉门戈舞。_________
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
Thestudyoftherulesgoverningthewayswordsarecombinedtoformsentencesis______.
最新回复
(
0
)