首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
admin
2019-05-11
49
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(x)=[*],显然,F’(x)=f(x).由于F’(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(-∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/cfV4777K
0
考研数学二
相关试题推荐
当χ→0时,χ-sinχcos2χ~cχk,则c=_______,k=_______.
设A为三阶方阵,A*为A的伴随矩阵,|A|=1/3,求|4A-(3A*)-1|.
函数y=χ+2cosχ在[0,]上的最大值为_______.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
求二重积分|x2+y2-x|dxdy,其中D={(x,y)|0≤y≤1-x,0≤x≤1}.
求的间断点并判断其类型.
设一球面过点M(1,2,3)且与各坐标面相切,求此球面方程.
函数u=arcsin()的定义域___________.
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,要做多少功?(假设在球从水中取出的过程中水面的高度不变.)
随机试题
简述国家利益、社会整体利益和个人利益的辩证统一。
背景A公司中标承建一大型电力装备制造厂的全部机电工程,总承包合同约定,A公司除完成关键设备安装外,其余公用工程和辅助工程可自行分包给各专业公司施工,A公司实行总包管理,对全面履行总承包合同负责,为此A公司成立了综合调度机构。在一次例行的全场实地
记账错误观点主要表现为漏记、重记和错记三种。错记又表现为( )。
海上运输的特点包括()。
以下与对应数据相关的说法中,错误的是()。
世界旅游组织的基本特征有()。
简述四班三运转和五班四运转的组织形式。
(2015年真题)简述我国司法机关依法独立行使职权原则的内涵。
某客户机使用DHCP获取IP地址等信息,其获取IP地址过程中捕获的4条报文及对第2条报文分析如下图所示。请分析其中的信息,补全内容。
ThecapitalofNewZealandis______.
最新回复
(
0
)