首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求 A的特征值与特征向最;
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求 A的特征值与特征向最;
admin
2013-12-27
46
问题
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且
求
A的特征值与特征向最;
选项
答案
令[*],则Aα
1
=一α
1
,Aα
2
=α
2
,根据特征值特征向量的定义,A的特征值为λ
1
=一1,λ
2
=1,对应的线性无关的特征向量为[*]因为rA=2<3,所以|A|=0,故λ
3
=0.令[*]为矩阵A的相应于λ
3
=0的特征向量,因为A为实对称矩阵,所以有[*]解得[*]故矩阵A的特征值为1,一1,0;特征向量依次为k
1
(1,0,1)
T
,k
2
(1,0,一1)
T
,k
3
(0,1,0)
T
,其中k
1
,k
2
,k
3
是不为0的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/bC54777K
0
考研数学一
相关试题推荐
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
求函数的极值.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无穷多组解
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
上的平均值为________.
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi-,i=1,2,…,n.求:(Ⅰ)Yi的方差DYi,i=1,2,…,n;(Ⅱ)Y1与Yn的协方差cov(Y1,Yn).
随机试题
根据《环评法》第26条建设项目建设过程中,建设单位应当同时实施()中提出的环境保护对策措施。
证券公司、证券投资咨询机构应当提前()个工作日将广告宣传方案和时间安排向公司住所地证监局、媒体所在地证监局报备。
下列各项不属于皮肤黏膜淋巴结综合征诊断要点的是
按照有机化合物的分类,单糖是
下列关于资本结构的说法中,错误的是()。
人民法院作出一审判决后,当事人在法定期限内未上诉的,一审判决即发生法律效力;当事人不履行判决的,另一方当事人可以向人民法院申请强制执行。()
晨晨体检最害怕抽血,老师先跟他讲解抽血的作用,然后让他看看抽血的图片,再让他看其他同学抽血,最后让他自己去抽血。这里老师实际上是运用了()来消除晨晨的惧怕。
学习动机支配着学习者的学习行为。小刘为了得到老师或父母的奖励而努力学习,则他的学习动机是()。
关系数据库管理系统应能实现的专门的关系运算包括______。
TheUSisconsideredamultilingualcountrybutithasneveremployedanofficiallanguagepolicy.EventhoughEnglishisclear
最新回复
(
0
)