首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数p的0—1分布,令 求随机变量(X1,X2)的联合分布。
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数p的0—1分布,令 求随机变量(X1,X2)的联合分布。
admin
2018-12-29
28
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数p的0—1分布,令
求随机变量(X
1
,X
2
)的联合分布。
选项
答案
根据题意随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0)。题目中是要计算出取各相应值的概率。注意事件Y
1
,Y
2
,Y
3
相互独立且服从同参数p的0—1分布,所以它们的和Y
1
+Y
2
+Y
3
[*]服从二项分布B(3,p)。于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2}=P{Y=0}+P{Y=3}=(1—P)
3
+P
3
, P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2}=P{Y=2}=3p
2
(1—P), P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3p(1—P)
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=[*]=0。 计算可得(X
1
,X
2
)的联合概率分布如下表所示 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bDM4777K
0
考研数学一
相关试题推荐
设函数f(x)在(0,+∞)内连续,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du.求函数f(x)的表达式.
设函数z=f(u)由方程u=φ(u)+∫xyp(x+y-t)dt所确定,u是变量x、y的函数,其中函数f(u)、φ(u)可微,而函数p(t)、φ’(u)连续,且φ’(u)≠1,求
设数列{an)满足条件:a0=3,a1=1,a(n-2)一n(n一1)an=0(n≥2),s(x)是幂级数的和函数.求S(x)的表达式.
假设随机变量X和Y的联合概率密度为求X和Y的联合分布函数F(x,y);
假设随机变量X和Y的联合概率密度为求未知常数c;
设随机变量X的分布函数为F(x),随机变量k=1,2.令U=Y1+Y2,V=Y1Y2,试求U与V的联合分布律.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:随机变量的分布律.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:参数p的值;
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
设随机变量x的概率密度为求Y的分布函数;
随机试题
制备单克隆抗体通常采用
A.三焦气化失宣B.脏腑功能失调,气血阴阳亏虚C.阴阳盛衰,营卫失和D.脏腑亏损,气血阴阳不足E.阴津亏损,燥热偏胜内伤发热的基本病机是
患者男,22岁。酗酒后遭雨淋,于第二天晚上突然起病,高热、寒战,继而咳嗽、胸痛,咳铁锈色痰。听诊,左下肺可闻及干、湿性哕音;触诊语颤增强。患者最可能的诊断是
A.对甲类传染病疫区实施封锁管理B.承担责任范围内的传染病监测管理工作C.在必要时可以采取停工、停业、停课D.承担本单位及负责地段的传染病预防、控制和疫情管理工作E.对违反《中华人民共和国传染病防治法》的行为给予行政处罚各级各类卫生防疫机构按照
在某地铁站乘车高峰期,现有A名乘客在地铁站内排队等候安检进站,后面仍有乘客不断进入站内排队等候安检。假设乘客按固定的速度进入站内,安检仪按照固定的速度安检。若只有一台安检仪,则需要30分钟才能将排队等候的乘客全部检票完毕;若有两台安检仪,则需要10分钟才能
混凝土浇筑的施工过程包括()等。
甲股份有限公司(以下简称甲公司)2004年至2012年度有关业务资料如下:①2004年1月1日,甲公司股东权益总额为46500万元(其中股本总额为10000万股,每股面值1元;资本公积为30000万元;盈余公积为6000万元;未分配利润
设级数都发散,则().
项目管理工具中,将网络方法用于工作计划安排的评审和检查的是(13)。
InterpretthefollowingpassagesfromEnglishintoChinese.Startinterpretingatthesignalandstopatthesignal.Youmaytak
最新回复
(
0
)