首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. (1)求矩阵A的全部特征值; (2)求|A*+2E|.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. (1)求矩阵A的全部特征值; (2)求|A*+2E|.
admin
2018-11-11
76
问题
设A为三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三维线性无关的列向量,且
Aξ
1
=-ξ
1
+2ξ
2
+2ξ
3
,Aξ
2
=2ξ
1
-ξ
2
-2ξ
3
,Aξ
3
=2ξ
1
-2ξ
2
-ξ
3
.
(1)求矩阵A的全部特征值;
(2)求|A
*
+2E|.
选项
答案
(1)A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)[*],因为ξ
1
,ξ
2
,ξ
3
线性无关,所以(ξ
1
,ξ
2
,ξ
3
)可逆, 故A~[*]=B. 由|λE-A|=|λE-B|=(λ+5)(λ-1)
2
=0,得A的特征值为-5,1,1. (2)因为|A|=-5,所以A
*
的特征值为1,-5,-5,故A
*
+2E的特征值为3,-3,-3.从而|A
*
+2E|=27.
解析
转载请注明原文地址:https://kaotiyun.com/show/bDj4777K
0
考研数学二
相关试题推荐
计算
设3阶实对称矩阵A的秩为2,且求A的所有特征值与特征向量;
求函数z=x4+y4一x2一2xy—y2的极值.
设线性方程组试问当a,b为何值时,方程组有唯一解,无解,有无穷多解?并求出无穷多解时的通解.
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为()
设f(x)在[a,b]上有连续的导数,证明
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是().
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
设当时,求x100.
随机试题
TheymaygotoLondon,buttheyarenotcertain().
关于碘酊和碘伏,正确的描述是
张某、方某共同出资,分别设立甲公司和丙公司。2013年3月1日,甲公司与乙公司签订了开发某房地产项目的《合作协议一》,约定如下:“甲公司将丙公司10%的股权转让给乙公司,乙公司在协议签订之日起三日内向甲公司支付首付款4000万元,尾款1000万元在次年3月
按照国务院有关规定批准开工报告的建筑工程,因故不能按期开工或者中止施工的,应当及时向批准机关报告情况,因故不能按期开工超过()的,应当重新办理开工报告的批准手续。
在进行摄人性会谈的过程中,控制会谈和转换话题的技巧不包括()。
看了《中华读书报》中《看法》栏目中的一篇读者来信《丰一吟的襟怀》,不禁引起我对新月还是残月讨论的兴趣。我从小就喜欢读丰子恺先生的书与画,觉得虽然不是轰轰烈烈,但总有一股雅趣渗透于其中。“人散后,一钩新月天如水”这幅画我也看过,也很喜欢。虽然丰先生画的是残月
通常所说的“白色污染”是指()。
陈鹤琴“五指活动”教育思想包括哪些内容?
Aswithotherformsofnonverbalcommunication,theuseoftouchtocommunicatefeelingsandemotionsvarieswidelyfromculture
ThewriterofChildeHarold’sPilgrimageis______.
最新回复
(
0
)