首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2018-05-25
66
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以 (A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6.又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由 [*] 得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1, [*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bEW4777K
0
考研数学三
相关试题推荐
求(a为常数,0<|a|<e).
(1)计算;(2)当x→1-时,求与等价的无穷大量.
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
设函数f(x),g(x)在[a,b]上连续且单调增,证明:∫abf(x)dx∫abg(x)dx≤(b-a)∫abf(x)g(x)dx.
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[y-(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1也线性无关的充要条件是k_________.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,χ1,χ2是分别属于λ1和λ2的特征向量.证明:χ1+χ2不是A的特征向量.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
已知非齐次线性方程组A3×4=b①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是_________.
随机试题
将下列句子进行排序,语序正确的是()。①每年春天,迎春花首先开出黄色的小花,报告春的消息②夜来香的香气熏透了整个夏夜的庭院,是我什么时候也不会忘记的③以后接着来的是桃花、杏花、海棠、榆叶梅、丁香等,院子里开得花团锦簇④我们家里一
关于α-螺旋的概念下列哪项是错误的()。
如图4-71所示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为()。
会计职业道德教育的内容包括()。
在基金份额发售的规定时间内,()应将招募说明书、基金合同摘要登载在指定报刊和所要求的网站上。
下列各项中,属于《公司法》规定的公司类型有( )。
某种机器人可搜索到的区域是半径为1米的圆,若该机器人沿直线行走10米,则其搜索出的区域的面积(单位:平方米)为().
Buttherealworldeventuallypenetrateseventheivorytower.Exactlyhowhumanitybecamehumanisstillamatterofdebate.Bu
There’ssimplepremisebehindwhatLarryMyersdoesforaliving:Ifyoucansmellit,youcanfindit.Myersisthefounderof
WriteacompositionentitledApplyforanEmployment.Youshouldwriteatleast120wordsbutnomorethan180wordsfollowingt
最新回复
(
0
)