首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2018-05-25
31
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以 (A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6.又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由 [*] 得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1, [*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bEW4777K
0
考研数学三
相关试题推荐
求(a为常数,0<|a|<e).
设函数f(x,y)在D上连续,且其中D由y=,x=1,y=2围成,求f(x,y).
设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程yˊ+ay=f(x)的解在[0,+∞)上有界.
设In=(n>1).证明:(1)In+In-2=,并由此计算In;(2)
设连续型随机变量X的所有可能值在区间[a,b]之内,证明:(1)a≤EX≤b;(2)DX≤
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由.(2)α4能否由α1,α2,α3线性表出,说明理
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
随机试题
下列不属于资本资产定价模型的局限性的是()。
我国目前居恶性肿瘤死亡前四位的恶性肿瘤是
建设项目负责人的重要职能是()。
吹填工程中,排水口的位置应根据()、排泥管的布置、容泥量等因素确定。
下列行为属于内幕交易的是()。
人出生头2~3年心理发展成就的集中表现是()。
按照《中小学教师职业道德规范》的要求,教师在对待有偿家教的问题上正确的做法是()。
有人说,民主就像一个旋转的陀螺,重要的是旋转的过程,离开了这个过程,民主的陀螺就会倒下。就民主决策而言,正确的决策结果自然会给人们带来希望和信心,而决策的过程,对人们凝聚信心的影响更大。这段文字中的比喻意在强调()。
在边长为8厘米的正方形纸片的四角均剪去一个边长为2厘米的小正方形,折起四边做成一个无盖方形盒子,这个盒子的容积是多少立方厘米?
设A为m×n矩阵,B为k×l矩阵.证明:=R(A)+R(B).
最新回复
(
0
)