首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2018-05-25
84
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以 (A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6.又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由 [*] 得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1, [*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bEW4777K
0
考研数学三
相关试题推荐
证明:
设,交换积分次序后I=_________.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
求齐次线性方程组基础解系.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
随机试题
下列关于无效腔和肺泡通气的叙述中,哪一项是错误的
依《票据法》的规定,下列有关汇票记载事项的哪一表述是正确的?
公路施工过程中,对生态环境的主要影响因素是()。
在网络计划中,判断关键工作的条件是该工作()。
买断式回购的到期结算由中国结算上海分公司组织融资方结算参与人和融券方结算参与人双方采用逐笔方式交收。( )
商业银行发行的混合资本债券,要计入附属资本,需要满足的条件有()。
设A,B是n阶方阵,则下列结论成立的是()。
下图是北半球亚热带某地2013年降水量逐月累加柱状图。读图回答下面各题。该地水循环最活跃的季节是()。
在文件存储设备管理中,有三类常用的空闲块管理方法,即位图向量法,空闲块链表连接法和______。
在E-R图中,矩形表示______。
最新回复
(
0
)