首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=x12+x22+x32—4x1x2—4x1x3+2ax2x3 通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P。
已知二次型 f(x1,x2,x3)=x12+x22+x32—4x1x2—4x1x3+2ax2x3 通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P。
admin
2019-03-23
67
问题
已知二次型
f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
—4x
1
x
2
—4x
1
x
3
+2ax
2
x
3
通过正交变换x=Py化成标准形f=3y
1
2
+3y
2
2
+by
3
2
,求参数a,b及正交矩阵P。
选项
答案
由题意,二次型f及其标准形的矩阵分别是 [*] 在正交变换下A与Λ相似,故有 [*] 解得a= —2,b= —3。 于是,矩阵A的特征值是3,3,—3。 当λ=3时,由(3E—A)x=0,系数矩阵 [*] 得基础解系α
1
=(—1,1,0)
T
,α
2
=(—1,0,1)
T
,即λ=3有两个线性无关的特征向量。 当λ= —3时,由(—3E—A)x=0,系数矩阵 [*] 得基础解系α
3
=(1,1,1)
T
,即λ= —3的特征向量。 由于λ=3的特征向量α
1
,α
2
不正交,故需施密特正交化。 令β
1
=α
1
=(—1,1,0)
T
,则 [*] 将三个特征向量单位化,有 [*] 那么,所用坐标变换x=Py中,正交矩阵 P=(γ
1
,γ
2
,γ
3
)=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/bHV4777K
0
考研数学二
相关试题推荐
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.①求f(x1,x2,x3)的矩阵的特征值.②如果f(x1,x2,x3)的规范形为y12+y22,求a.
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
求微分方程的满足初始条件y(1)=0的特解.
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
二次型f(x1,z2,z3)一z;+ax;+z;一4x1z2—8x1z3—4x2.273经过正交变换化为标准形5y12+by22+4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q2=24-0.2p1,q2=10-0.05p2总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=若α0=,
随机试题
(2003)Idon’tthinkthatIshallfail.ButifI____Iwouldtryagain.
IfIcanhelp______,Idon’tlikeworkinglateintothenight.
下列结缔组织病中,最易并发恶性肿瘤的是
儿童期最常见的急腹症有
线粒体在透射电镜下观察,以下描述哪个是正确的
2000年,春兰集团决定将总部迁到上海,而生产基地仍留在江苏省泰州,这说明在经济全球化过程中,城市发生了()变化。
“竹席:竹子”与“衣服:布料”这两组词的逻辑关系一致。()
Barbara:Yourhelpmeanseverything.Justdon’tknowI’lleverrepayyou.Kenneth:______.It’snothing!
实践的基本属性有()
记Y1=X1X4,Y2=X2X3,则X=Y1-Y2,且Y1,Y2独立同分布:P{Y1=1}=P{X1=1,X4=1}=P{X1=1}P{X4=1}=0.16=P{Y2
最新回复
(
0
)