首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
admin
2019-07-22
116
问题
设f(x)为[a,b]上的函数且满足
则称f(x)为[a,b]上的凹函数,证明:
(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.
(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
(i)
∈[0,1],f(λx
1
+(1一λ)x
2
)≤λf(x
1
)+(1—λ)f(x
2
),x
1
,x
2
∈[a,b];
(iv)f(x)为(a,b)上的连续函数.
选项
答案
(1)对[*]x,x
0
∈[a,b],有 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x-x
0
)
2
>f(x
0
)+f’(x
0
)(x—x
0
),在上式中分别取x=x
1
,x=x
2
,[*]得到 [*] 上述两式相加即得证. (2)先证(i).由(1)有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
),分别取x=x
1
,x=x
2
,x
0
=λx
1
+(1一λ)x
2
,得到 f(x
1
)≥f(x
0
)+(1一λ)f’(x
0
)(x
1
—x
2
), ① f(x
2
)≥f(x
0
)+λf’(x
0
)(x
2
一x
1
). ② λ×①+(1一λ)×②得 λf(x
1
)+(1-λ)f(x
2
)≥f(x
0
)=f(λx
1
+(1一λ)x
2
), 得证[*] 再证(iv).[*]∈[a,b],设G为|f(x)|的上界,取绝对值充分小的δ,m<n,使得 x
1
=x
2
=…=x
m
=x+nδ,x
m+1
=…=x
n
=x.由(ii)知 [*] 令δ→0,则n→∞,故有f(x+δ)一f(x)→0,从而证明了f(x)的连续性.
解析
转载请注明原文地址:https://kaotiyun.com/show/bQN4777K
0
考研数学二
相关试题推荐
设。P1=,则必有()
设φ(χ)=∫0χ(χ-t)2f(t)dt,求φ″′(χ),其中f(χ)为连续函数.
n维列向量组α1,…,αn-1线性无关.且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
讨论反常积分的敛散性,若收敛计算其值.
累计积分dθ∫0cosθf(rcosθ,rsinθ)rdr可以写成()
参数a取何值时,线性方程组有无数个解?求其通解.
若函数f(x)在x=1处的导数存在,则极限=_______.
利用代换u=ycosx将微分方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x—C处带拉格朗日型余项的一阶泰勒公式;
随机试题
中央银行产生的必要性在于()。
简述企业经营战略决策工作的地位和重要性。
HistorianstendtotellthesamejokewhentheyaredescribinghistoryeducationinAmerica.It’stheone【C1】______theteacher
用标准差和均数可全面描述
胆道蛔虫病患者特征性临床表现是
甲、乙、丙、丁、戊五人拟成立宏发有限责任公司,公司注册资本100万元人民币。其中,甲、乙、丙三人各出资25万元,丁用一间门脸房作价10万元出资,戊以一辆汽车作价15万元出资。公司经营范围为家电销售。根据题设,请回答下列问题。设公司章程规定,甲为董事长,
西亚园林体系强调水法,把水当做园林的灵魂,使水在园林中尽量发挥作用。()
公民、法人或者其他组织对公安机关的下列具体行政行为不服的,可以提起行政复议的是()。
结合学习党的十七大报告,试论如何坚持和完善我国的人民代表大会制度。
Theprotectionofculturaldiversityfromapoliticalandeconomicpointofviewinfactbecamepressingwithglobalization,whi
最新回复
(
0
)