首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
admin
2019-07-22
84
问题
设f(x)为[a,b]上的函数且满足
则称f(x)为[a,b]上的凹函数,证明:
(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.
(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
(i)
∈[0,1],f(λx
1
+(1一λ)x
2
)≤λf(x
1
)+(1—λ)f(x
2
),x
1
,x
2
∈[a,b];
(iv)f(x)为(a,b)上的连续函数.
选项
答案
(1)对[*]x,x
0
∈[a,b],有 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x-x
0
)
2
>f(x
0
)+f’(x
0
)(x—x
0
),在上式中分别取x=x
1
,x=x
2
,[*]得到 [*] 上述两式相加即得证. (2)先证(i).由(1)有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
),分别取x=x
1
,x=x
2
,x
0
=λx
1
+(1一λ)x
2
,得到 f(x
1
)≥f(x
0
)+(1一λ)f’(x
0
)(x
1
—x
2
), ① f(x
2
)≥f(x
0
)+λf’(x
0
)(x
2
一x
1
). ② λ×①+(1一λ)×②得 λf(x
1
)+(1-λ)f(x
2
)≥f(x
0
)=f(λx
1
+(1一λ)x
2
), 得证[*] 再证(iv).[*]∈[a,b],设G为|f(x)|的上界,取绝对值充分小的δ,m<n,使得 x
1
=x
2
=…=x
m
=x+nδ,x
m+1
=…=x
n
=x.由(ii)知 [*] 令δ→0,则n→∞,故有f(x+δ)一f(x)→0,从而证明了f(x)的连续性.
解析
转载请注明原文地址:https://kaotiyun.com/show/bQN4777K
0
考研数学二
相关试题推荐
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明:(1)存在ξ∈(1,2),使得(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
求
=_______.
设f(χ)=,求f(χ)及其间断点,判断其类型.
求常数a,b使得f(χ)=在χ=0处可导.
∫01arctanχdχ=_______.
证明不等式:χarctanχ≥ln(1+χ2).
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
设y=(1+x2)arctanx,求y’.
随机试题
菲利普斯曲线
争名利,何年是彻。彻:
A.浸渍法B.渗漉法C.煎煮法D.回流法E.沙氏或索氏提取法
研究城市土地利用空间分布结构时,将城镇分为()。
计算机的数据输出设备主要有()、打印机、绘图仪等。
甲上市公司拟非公开发行股票,其发行方案的下列内容中,符合证券法律制度规定的是()。(2011年)
突发事件,是指突然发生,造成或者可能造成严重社会危害,需要采取应急处置措施予以应对的自然灾害、事故灾难、公共卫生事件和社会安全事件。为妥善处理突发事件,国家建立统一领导、综合协调、分类管理、分级负责、()管理为主的应急管理体制。
(2017·福建)“小明既聪明又勤奋”,该评价涉及的心理现象是()
《根特协定》
Notes:parade游行TheVillageofPouceCoupeofficewillreopenon________.
最新回复
(
0
)