首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C是三个随机事件,P(ABC)=0,且
设A,B,C是三个随机事件,P(ABC)=0,且
admin
2019-11-03
23
问题
设A,B,C是三个随机事件,P(ABC)=0,且
选项
A、P(ABC)=P(A)P(B)P(C)。
B、P[(A+B)|C]=P(A|C)+P(B|C)。
C、P(A+B+C)=P(A)+P(B)+P(C)。
D、P[(A+B)C]=P(A|C)+P(B|C)。
答案
B
解析
选项(A):由于不知道P(A)或P(B)是否为零,因此选项(A)不一定成立。
选项(B):P[(A+B)C]=P(AC+BC)=P(AC)+P(BC)-P(ABC)=P(AC)+P(BC),
P[(A+B)|C]=
可见选项(B)正确。
选项(C):P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC),由于不能确定P(AB),P(AC),P(BC)的概率是否全为零,因此选项(C)不一定成立。
选项(D):
而P
=P(AB)-P(ABC),其值是否为零不能判断,因此选项(D)也不一定成立。故选(B)。
转载请注明原文地址:https://kaotiyun.com/show/bUS4777K
0
考研数学一
相关试题推荐
设函数,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设f(x)=∫0xecostdt,求∫0πf(x)cosxdx.
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设矩阵A=,行列式|A|=-1,又A*的属于特征值λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值。
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,=a,其中D={(x,y)丨0≤x≤1,0≤yY≤1},计算二重积分
设z=z(x,y)具有二阶连续偏导数,试确定常数a与b,使得经变换μ=x+ay,v=x+by,可将z关于x,y的方程。化为z关于u,v的方程,并求出其解z=z(x+ay,x+by).
已知曲线在直角坐标系中由参数方程给出:x=t+e-t,y=2t+e-2t(t≥0).证明y=y(x)在[1,+∞)单调上升且是凸的.
设L为曲线:则I=∫L(x2+3y+3z)ds=______.
随机试题
大众传播学者所说的“靶子”是指【】
A、y轴轴向牵拉伴x轴旋转B、x轴旋转力量C、y轴的轴向压缩D、y轴轴向压缩伴顺或逆时钟旋转单纯楔形压缩性骨折暴力来自______。
“滋水涵木”法确立的理论依据是
A.骨髓B.淋巴结C.胸腺D.外周免疫器官E.脾免疫应答发生的部位是
()是目前国内采用最为广泛的一种形式,适用于各类非水溶性甲、乙、丙类液体储罐和水溶性甲、乙、丙类液体的固定顶或内浮顶储罐。
与其他融资方式相比,下列属于融资租赁筹资方式特点的有()。
A、 B、 C、 D、 B
根据材料l,说明人的命运是由什么决定的?根据材料3,说明作者是何观点?
AccordingtoDarwin,whydopeoplelaugh?
ThoughIdaBauerwasonly18yearsold,shehadcometoSigmundFreudsufferingfromcoughingandspeechlessness.She’dbecomed
最新回复
(
0
)