首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 求可逆矩阵P,使得P-1AP为对角矩阵.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2018-07-27
44
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
对应于λ
1
=λ
2
=1,解齐次线性方程组(E-B)x=0,得基础解系 ξ
1
=(-1,1,0)
T
,ξ
2
=(-2,0,1)
T
对应于λ
3
=4,解齐次线性方程组(4E-B)x=0,得基础解系 ξ
3
=(0,1,1)
T
令矩阵 Q=(ξ
1
,ξ
2
,ξ
3
) [*] 则有 Q
-1
BQ [*] 因Q
-1
BQ=Q
-1
C
-1
ACQ=(CQ)
-1
A(CQ),记矩阵 P=CQ [*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
) 则有P
-1
AP=Q
-1
BQ=diag(1,1,4)为对角矩阵,故P即为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/bXW4777K
0
考研数学三
相关试题推荐
设A是n阶反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设A,B均是n阶矩阵,下列命题中正确的是
(Ⅰ)设函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,求(Ⅱ)设函数y=y(x)由方程x3+y3-sin3x+6y=0所确定,求dy|x=0;(Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
求微分方程(x-4)y4dx-x3(y2-3)dy=0的通解.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
已知α1=(1,-1,1)T,α2=(1,t,-1)T,α3=(t,1,2)T,β=(4,t2,-4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设一曲线过点(e,1),且在此曲线上任意一点M(x,y)处的法线斜率为,求此曲线方程.
随机试题
方程yˊ+y=一x满足条件y|x=2=0的解是y=【】[img][/img]
由于脏腑生理功能的太过或不及,以及脏腑生理功能之间的失调而致病,此病机属于由于脏腑本身的阴阳、气血失调而致病,此病机属于
2009年玉才公司发生如下部分业务:(1)因购货向浩然公司签发了一张汇票,金额记载为20万元,签章为玉才公司公章,出票日期为2月12日。浩然公司收到汇票后在规定期限内向付款人银行提示承兑,但银行以票据不符合要求而拒绝受理。(2)向乙公司
根据《个人贷款管理暂行办法》规定,贷款人应按区域、品种、客户群等维度建立个人贷款()管理制度。
ABC会计师事务所负责审计D集团公司2017年度财务报表,并委派A注册会计师担任审计项目合伙人。D集团公司属于家电制造行业,共有4家全资子公司,各子公司的相关资料摘录如下。要求:假定在确定某子公司对集团而言是否具有财务重大性时,A注册会计师采用资产
在艾罩克森的理论中,“繁衍”一词()。
家庭教育的主要任务有【】
屏幕,银幕
Thesecretsofsleepwereamysteryforcenturiessimplybecausetherewasneitherthemeans(51)them,northeneed.Onlywhenca
Humanneedsseemendless.Whenahungrymangetsameal,hebeginstothinkaboutanovercoat:whenamanagergetsanewsports
最新回复
(
0
)