首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求齐次线性方程组的通解,并将其基础解系单位正交化。
求齐次线性方程组的通解,并将其基础解系单位正交化。
admin
2018-01-26
81
问题
求齐次线性方程组
的通解,并将其基础解系单位正交化。
选项
答案
取x
3
,x
4
为自由未知量,则方程组的基础解系为α
1
=(1,0,1,0)
T
,α
2
=(-1,1,0,1)
T
,所以该齐次线性方程组的通解为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
为任意常数。 对α
1
,α
2
进行施密特正交化,令 β
1
=α
1
=(1,0,1,0)
T
。 β
2
=α
2
-([α
2
,β
1
]/[β
1
,β
1
])β
1
=(-1,1,0,1)
T
-[*](1,0,1,0)
T
=[*](-1,2,1,2)
T
,单位化得γ
1
=β
1
/‖β
1
‖=[*](1,0,1,0)
T
,γ
2
=β
2
/‖β
2
‖[*](=1,2,1,2)
T
。
解析
转载请注明原文地址:https://kaotiyun.com/show/bcr4777K
0
考研数学一
相关试题推荐
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.
下列说法中正确的是().
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
f(x)在[-1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f’’’(ξ)=3.
设=A,证明:数列{an}有界.
求微分方程xy’+y=xex满足y(1)=1的特解.
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λs,λ1,…,λ2,使(k1+λ1)α1+(k2+λ2)α2+…+(k2+λ1)β1+(k1一λ1)β1+…+(ks一λs)βs=0,则
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
随机试题
针对哮喘病因的治疗措施是
2006年9月成立的期货交易所是()。
下面为人体基本轴的是()。
特发性心肌炎是
妇科门诊,一位35岁的已婚女性,主诉外阴瘙痒。阴道检查时见白带多而稀薄,呈灰黄色泡沫状,擦去白带见阴道黏膜有散在的红点。根据此女病人的临床表现,考虑必须做的特殊化验项目是
2009年2月,家住甲市A区的赵刚向家住甲市B区的李强借了5000元,言明2010年2月之前偿还。到期后赵刚一直没有还钱。2010年3月,李强找到赵刚家追讨该债务,发生争吵。赵刚因所牵宠物狗易受惊,遂对李强说:“你不要大声喊,狗会咬你。”李强不理
已知城市某一水平输水管,管的长度l=4000m,管的直径d=250mm,管的沿程阻力系数λ=0.023,若要保证输水管通过的流量Q=50L/s,则输水管进口所需要的水压是()。
在信息处理中,首先应()。
学生回答选择题时所使用的记忆过程主要是()
A、大学生学习B、大学生住宿C、大学生洗衣服D、大学生相处B根据短文内容,可知短文谈论的是大学生住宿问题,所以选B。
最新回复
(
0
)