首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在 (0,+∞)内有且仅有一个根.
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在 (0,+∞)内有且仅有一个根.
admin
2015-07-24
60
问题
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f"(x)≥0.证明:f(x)=0在 (0,+∞)内有且仅有一个根.
选项
答案
因为f"(x)≥0,所以f’(x)单调不减,当x>0时,f’(x)≥f’(0)=1. 当x>0时,f(x)一f(0)=f’(ξ)x,从而f(x)≥f(0)+x,因为[*]=+∞, 所以[*]. 由f(x)在[0,+∞)上连续,且f(0)=一2<0,[*]=+∞,则f(x)=0在(0,+∞)内至少有一个根,又由f’(x)≥1>0,得方程的根是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/f9w4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(α>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=(b-ξ)/af’(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得[f(b)-f(ξ)]/(lnξ-lna)=ξf’(ξ).
设f(x),g(x)在[n,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得f’(ζ)/f’(ξ)=ξ/η.
f(x)在[-1,1]上连续,则x=0是函数g(x)=(∫0xf(t)dt)/x的().
设z=f(x2+y2,y/x),且f(u,v)具有二阶连续的偏导数,则
已知x=zey+x确定函数z=z(x,y),则dz|(e,0)=________。
求正常数a、b,使
28.已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q-1AQ=A。
数列的最大项为________。
随机试题
婴幼儿患化脓性脑膜炎时,最常见的病原菌是
确立“阴中求阳,阳中求阴”的理论依据是()(2008年第3题)
对于N位分辨率的转换器,必须产生2n个离散的模拟电平。
关于多次内部混响的表述正确的是
诊断是若手术,最佳方案为
桃核承气汤的主治病机是
该市2005年6月的总保费收入比去年同期约增长了:根据四年来该市保费收入的变化,可以推出:[1]该市的人均收入有较大增长[2]人们的保险和理财意识不断增强[3]人们对于人身险的投入明显高于对于其他险种的投入
100个24×24点阵的汉字字模信息所占用的字节数是
WhatwillLucydofirsttonight?
Beyondthestars,theastronautsawnothingbutthespace.
最新回复
(
0
)