首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(2,3,3)T,α2=(1,0,3)T,α3=(3,5,a+2)T,若β1=(4,-3,15)T可由α1,α2,α3线性表示,β2=(-2,-5,a)T不能由α1,α2,α3线性表示,则a=______.
已知α1=(2,3,3)T,α2=(1,0,3)T,α3=(3,5,a+2)T,若β1=(4,-3,15)T可由α1,α2,α3线性表示,β2=(-2,-5,a)T不能由α1,α2,α3线性表示,则a=______.
admin
2017-05-18
67
问题
已知α
1
=(2,3,3)
T
,α
2
=(1,0,3)
T
,α
3
=(3,5,a+2)
T
,若β
1
=(4,-3,15)
T
可由α
1
,α
2
,α
3
线性表示,β
2
=(-2,-5,a)
T
不能由α
1
,α
2
,α
3
线性表示,则a=______.
选项
答案
2
解析
β
1
可由α
1
,α
2
,α
3
线性表示,即方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
有解,β
2
不能由α
1
,α
2
,α
3
线性表示,即方程组y
1
α
1
+y
2
α
2
+y
3
α
3
=β
2
无解.由于这两个方程组的系数矩阵是一样的,因此可联合起来加减消元
(α
1
,α
2
,α
3
,β
1
,β
2
)
无论a为何值,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
系数矩阵的秩与增广矩阵的秩总相等,故方程组总有解,即β
1
必可由α
1
,α
2
,α
3
线性表示.
而方程组y
1
α
1
+y
2
α
2
+y
3
α
3
=β
2
在a=2时由于系数矩阵的秩与增广矩阵的秩不相等,故方程组无解,即β
2
在a=2时不能由α
1
,α
2
,α
3
线性表示,两者取交集得到a=2.
转载请注明原文地址:https://kaotiyun.com/show/bcu4777K
0
考研数学一
相关试题推荐
根据题意设X1,X2,…,Xn是一个简单随机样本,因此X1,X2,…,Xn相互独立,且与总体同分布,从而可知[*]
设f(x,y)与φ(x,y)均为可微函数,且φˊy(x,y)≠0,已知(xo,yo)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。求S(x)的表达式。
设(X1,X2,…,Xn)为取自正态总体X~N(μ,σT)的样本,则μ2+σ2的矩法估计量为
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
(2012年试题,三)已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数a的值;
(2007年试题,20)设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y’’一2xy’一4y=0。y(0)=0,y’(0)=1证明
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为其中λ>0,A>0为已知参数.记)求Y的数学期望EY的最大似然估计量.
(92年)设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为
随机试题
能够充分伸展背阔肌的方式是()。
糖尿病患者尿量增多的原因是
人体内天然对比度较好的部位是
针灸治疗心脾亏虚证之不寐,配穴为针灸治疗肝阳上扰证之不寐,配穴为
小儿泌尿系解剖特点正确的是
证券交易所上市证券的清算和交收由登记结算公司集中完成。()
试述注意的规律与幼儿活动的关系。
窦娥:关汉卿:元朝
Electriccarsaregettingcheaperandtheirsalesareontherise,buttheirfuturesuccessmaydependonditchingakey【C1】____
Accordingtotheprofessor,whatistheproblemwithvisualstereotypes?
最新回复
(
0
)