首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A和B都是n阶矩阵.给出下列条件 ①A是数量矩阵. ②A和B都可逆. ③(A+B)2=A2+2AB+B2. ④AB=cE. ⑤(AB)2=A2B2. 则其中可推出AB=BA的有( )
A和B都是n阶矩阵.给出下列条件 ①A是数量矩阵. ②A和B都可逆. ③(A+B)2=A2+2AB+B2. ④AB=cE. ⑤(AB)2=A2B2. 则其中可推出AB=BA的有( )
admin
2017-10-21
54
问题
A和B都是n阶矩阵.给出下列条件
①A是数量矩阵.
②A和B都可逆.
③(A+B)
2
=A
2
+2AB+B
2
.
④AB=cE.
⑤(AB)
2
=A
2
B
2
.
则其中可推出AB=BA的有( )
选项
A、①②③④⑤
B、①③⑤
C、①③④
D、①③
答案
D
解析
①和③的成立是明显的.②是不对的,如
则
④AB=cE,在c≠0时可推出AB=BA,但是c=0时则推不出AB=BA.
如
则
⑤(AB)
2
=A
2
B
2
推不出AB=BA.对于④中的A和B,(AB)
2
和A
2
B
2
都是零矩阵,但是AB≠BA.
转载请注明原文地址:https://kaotiyun.com/show/bdH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设A是n阶正定矩阵,证明:|E+A|>1.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
随机试题
在用卧式测长仪测量时,其读数结果是由三者相加得到的,即精密玻璃刻度尺的像上的读数、固定分划尺上的读数及螺旋线分划板内的圆周刻线尺上估读得的读数。()
埋设在一般泥土中的管道应用()防腐层。
患者,男性,27岁。因腰部受伤后伤口持续溢出淡红色液体,血压100/70mmHg,脉搏100次/分,出现休克症状。左上腹有压痛,但无肌紧张和反跳痛。对该患者的护理措施不当的是
骨关节炎关节肿大的特点不正确的是
下列说法正确的是()。
商业银行的()直接反映了其从宏观到微观的所有层面的运营状况及市场声誉。
在现代社会中,通常控制社会经济运行的两大并行力量是()。
华佗是我国东汉名医。一次,府吏倪寻和李延俩人均头痛发热。一同去请华佗诊治,华佗经过仔细的望色、诊脉,开出两付不同的处方。给倪寻开的是泻药,给李延开的是解表发散药。二人不解:我俩患的是同一症状,为何开的药方却不同呢?是不是华佗弄错了?于是,他们向华佗请教。华
为了把观众从电视夺回来,好莱坞推出了一种新玩艺——立体电影。戴着特殊眼镜的观众像在观看《布瓦那魔鬼》及《蜡屋》这类惊险片那样,发现自己躲在逃跑的火车及魔鬼的后面,感受真实刺激。2010年由著名导演詹姆斯.卡梅隆执导3D电影《阿凡达》更是大获成功,立体影片得
--Neverthoughttoseeyouhere.
最新回复
(
0
)