首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 (Ⅰ)证明矩阵A能相似于对角矩阵; (Ⅱ)若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 (Ⅰ)证明矩阵A能相似于对角矩阵; (Ⅱ)若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
admin
2019-07-23
53
问题
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。
(Ⅰ)证明矩阵A能相似于对角矩阵;
(Ⅱ)若α=(0,-1,1)
T
,β=(1,0,-1)
T
,求矩阵A。
选项
答案
(Ⅰ)因为A的各行元素和为零,从而λ=0为A的一个特征值,并且γ=(1,1,1)
T
为A属于λ=0的特征向量。 另一方面,又因为Aα=3β,Aβ=3α,所以 A(α+β)=3(α+β),A(α-β)=-3(α-β), λ=3和λ=-3为A的两个特征值,并且α+β和α-β为A属于λ=3,-3的特征向量,可见A有三个不同的特征值,所以A能相似于对角矩阵。 (Ⅱ)A的三个特征向量为 γ=(1,1,1)
T
,α+β=(1,-1,0)
T
,α-β=(-1,-1,2)
T
, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bfJ4777K
0
考研数学三
相关试题推荐
______.
求幂级数的收敛域.
设f(x)在[a,+∞)上连续,且存在.证明:f(x)在[a,+∞)上有界.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设f(x,y)在点(0,0)处是否连续?
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设随机变量X在(0,1)上服从均匀分布,现有一常数a,任取X的四个值,已知至少有一个大于a的概率为0.9,问a是多少?
随机试题
根据药物特性,不能用于口服的是()。
适用于制作蔬菜的玉米类型是________。
可证明痰液来自肺及支气管深部的痰液涂片需要见到的细胞为
贸易术语具有两重性,即一方面表示交货条件,另一方面表示成交价格的构成因素,这两者是无关联的。()
根据有关规定,可以不征或免征土地增值税的有()。
当产品的市场需求处于充分需求状态时,企业通常应进行()市场营销。
教育是社会主义现代化建设的基础,国家保障教育事业()
当你端着满满的一杯咖啡行走时,如果你的眼睛老是盯着液面,心中总在设法使之平衡,结果你会发现咖啡液面的波动会越来越剧烈,以至溅出杯子。相反,如果你不过分地小心翼翼,大胆地走,它反而不会溅出杯子。政府对经济的干预也是这样,_______。横线处应填入
Entertheinformationage.Informationistherawmaterialformanyofthebusinessactivitiesshapingthisnewera,(1)_____ir
Thispassageisfromapieceof______.Whatdoyouknowaboutthecenter’semployees?
最新回复
(
0
)