首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-05-25
74
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
2
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立;设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
.令 [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-
2
)…(x-
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0,由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0,再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
n
(ξ)=0.而φ
n
(x)=f
n
(x)-n!k,所以f
n
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OEW4777K
0
考研数学三
相关试题推荐
求∫xsin2xdx.
设f(x)=∫0sinxsin2tdt,g(x)=∫02xln(1+t)dt.则当x→0时,f(x)与g(x)相比是()
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设总体X~N(μ1,σ2),Y~N(μ2,σ2).从总体X,Y中独立地抽取两个容量为m,n的样本X1,Xm和Y1,Yn.记样本均值分别为若是σ2的无偏估计.求:(1)C;(2)Z的方差DZ.
在区间(0,1)中随机地取两个数,则事件“两数之和小于6/5”的概率为_________.
计算下列二重积分:设D是由x≥0.y≥x与x2+(y一b)2≤b2,x2+(y一a)2≥a2(0<a<b)所围成的平面区域,求
求下列极限:
求y’’-7y’+12y=x满足初始条件y(0)=的特解.
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值,使该图形绕X轴旋转一周所得的立体体积最小.
对某地抽样调查的结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率.[附表]:表中Ф(χ)是标准正态分布函数.
随机试题
牙本质敏感症最可靠的诊断方法是
关于甲亢手术治疗的适应证,不正确的是
行政统一原则具体体现为()。
在工程监理行业,能承担全过程、全方位监理任务的综合性监理企业与能承担某一专业监理任务的监理企业应当协调发展,这体现的是建设工程监理( )的发展趋势。
“发函询证法”一般适用于( )。
下列说法正确的是()。
无套利技术最早被资本资产定价理论(CAPM)采用。( )
阅读以下文字。完成下列问题。中国电影如今呈现出勃勃生机,不仅产量高居世界前列,中国市场也一跃成为世界第二大电影市场。但由于电影市场、电影产业尚未成熟,“娱乐至死”成为部分影视作品引以为豪的追求。从所谓“屌丝”电影到所谓“毒舌”电影,从偶像电影
受利润刺激,某公司新财年的薪酬总额增长一倍,其中管理层增幅为2/3,普通员工增幅为1.5倍。若加薪后管理层的平均薪酬是普通员工的4倍,则管理层占全部人数的比例是多少?
BSP方法所定义的企业数据类中,一般包括【】类数据、事务类数据、存档类数据和统计类数据。
最新回复
(
0
)