首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-05-25
45
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
2
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立;设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
.令 [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-
2
)…(x-
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0,由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0,再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
n
(ξ)=0.而φ
n
(x)=f
n
(x)-n!k,所以f
n
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OEW4777K
0
考研数学三
相关试题推荐
将分解为部分分式的形式为_________.
设随机变量U在[-2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y)].
设试验成功的概率为,失败的概率为,独立重复试验直到成功两次为止,试求试验次数的数学期望.
设随机变量X的分布函数为F(x),密度函数为其中A为常数,则=()
设X1,X2,Xn是来自总体N(0,σ2)的简单随机样本,记U=X1+X2与V=X2+X3,则(U,V)的概率密度为_________.
设(2E-C-1)AT=C-1.其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=________.
求下列极限:
求[φ(x)-t]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
细菌的增长率与总数成正比.如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
随机试题
A.硬化型B.髓质型C.蕈伞型D.溃疡型E.缩窄型阻塞程度较轻的食管癌是
江某于2012年12月购买了一套普通住房,2015年3月将该住房以120万元的价格转让给张某。此后,该小区被依法征收,由甲房地产企业(以下简称甲企业)进行住宅开发。张某选择的补偿方式为房屋产权调换。关于江某将住房转让给张某的说法,正确的为(
影响室内气流组织的主要因素是()。
以下关于担任总会计师的资格论述,说法不正确的是()。
外汇市场的功能包括()。
民族精神和时代精神作为社会主义核心价值体系的精髓,解决的是应当具备什么样的精神状态和精神风貌的问题。之所以要弘扬民族精神和时代精神,是因为()。
甲育有二子乙和丙。甲生前立下遗嘱,其个人所有的房屋死后由乙继承。乙与丁结婚,并有一女戊。乙因病先于甲死亡后,丁接替乙赡养甲。丙未婚。甲死亡后遗有房屋和现金。对于甲死亡后遗留的房屋,下列说法正确的是()。
自居易:在天愿作比翼鸟,在地愿为连理枝
俄国历史上第一次规定建立女子学校的章程是()。
Accordingtotheauthor,theaccidentsaremainlycausedby______.Peopleusedtothinkthat______.
最新回复
(
0
)