首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-05-25
87
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
2
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立;设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
.令 [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-
2
)…(x-
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0,由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0,再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
n
(ξ)=0.而φ
n
(x)=f
n
(x)-n!k,所以f
n
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OEW4777K
0
考研数学三
相关试题推荐
将分解为部分分式的形式为_________.
求解(1+)ydx+(y-x)dy=0.
设X,Y相互独立同分布,均服从几何分布P{X=k)=qk-1p,k=1,2,…,求E(max{X,Y}).
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设随机变量服从几何分布,其分布律为P{X=k}=(1-P)k-1p,0<p<1,k=1,2,…,求EX与DX.
设事件A,B,C两两独立,三个事件不能同时发生,且它们的概率相等,则P(A∪B∪C)的最大值为__________.
设f(x)=讨论函数f(x)在x=0处的可导性.
判断级数的敛散性.
求y’’-7y’+12y=x满足初始条件y(0)=的特解.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
随机试题
________是编排演示文稿最直观的视图模式。
手机对于()相当于电影对于()
患者,女性,67岁,因头痛、心悸和心前至不适感,门诊查血压:160/95mmHg,据此可以推断该病人高血压分级属于
男性,70岁,原有肺心病,感冒后病情加重,咳脓痰,发热、烦躁,继之出现神志模糊,嗜睡。查体:口唇发绀,昏迷,血压14.7/9.33kPa(110/70mmHg),无病理反射.可能的诊断是
下列各项中,会引起现金流量净额发生变动的是()。
阅读下面的教学反思(节选),按要求答题。讲《(呐喊)自序》时,我自感底气不足,于是在课文以外研读了鲁迅相关作品。其后,我把《(呐喊)自序》逐字逐句地诵读了20遍,终于找到了理解整篇文章的关键点,即文中的四个关键词——梦想、寂寞、希望、呐喊,也明确了这节课
根据埃里克森的心理社会发展理论,发展任务是获得勤奋感而克服自卑感,体验着能力的实现的是()
荷兰以郁金香、风车、牧场和运河而闻名天下。郁金香是荷兰的国花,品种达二百多个。除郁金香外,还有水仙、风信子……每年的三月到九月,整个荷兰就是一个万紫千红的鲜花世界,它也因此获得了“欧洲花园”“花卉王国”的美誉。荷兰的运河纵横交错,在运河之间是一望无际的牧场
用UML建立业务模型是理解企业业务的第一步,业务人员扮演业务中的角色及其交互方式,例如航空公司的售票员是业务员,电话售票员也是业务员,它们直接的关系是()。
有如下程序:#includeusingnamespacestd;classXX{protected:intk:public:xx(intn=5):k(n){}:
最新回复
(
0
)