首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶非零矩阵,满足A2=A,且A≠E,则必有 ( )
设A是3阶非零矩阵,满足A2=A,且A≠E,则必有 ( )
admin
2019-08-11
22
问题
设A是3阶非零矩阵,满足A
2
=A,且A≠E,则必有 ( )
选项
A、r(A)=1.
B、r(A-E)=2.
C、[r(A)-1][r(A-E)-2]=0.
D、[r(A)-1][r(A-E)-1]=0.
答案
D
解析
A是3阶非零矩阵,则A≠0,r(A)≥1.
A≠E,A-E≠0.r(A-E)≥1,
因A
2
=A,即A(A-E)=0,得r(A)+r(A—E)≤3,且
1≤r(A)≤2,1≤r(A-E)≤2.
故矩阵A和A-E的秩r(A)和r(A-E)或者都是1,或者一个是1,另一个是2(不会是3,也不会是0,也不可能两个都是2.故两个中至少有一个的秩为1).
故(A)、(B)、(C)均是错误的,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/bfN4777K
0
考研数学二
相关试题推荐
设.则f[f(x)]=______.
______.
设f(x)在区间[a,b]上存在一阶导数,且fˊ(a)≠fˊ(b).则必存在x0∈(a,b)使()
设f(x)在x=0处存在二阶导数,且f(0)=0,fˊ(0)=0,f″(0)≠0.则()[img][/img]
(08年)(I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续。则至少存在一点η∈[a,b].使得∫abf(x)dx=f(η)(b一a);(Ⅱ)若函数φ(x)具有二阶导数.且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx则至少存在
(05年)设函数f(x)连续,且f(0)≠0,求极限
(12年)设函数f(x,y)可微,且对任意x,y都有则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是
(1999年)设矩阵矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵.求矩阵X.
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+kα3线性无关是向量组α1,α2,α3线性无关的
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
随机试题
患者,女性,30岁,胸片示右上纵隔见一圆形致密影,其中见斑点钙化影,透视下致密影随吞咽上下移动。首先考虑为
轻度不良反应的主要表现和危害是
甲公司未授予王某代理权,王某以甲公司名义与乙企业实施民事行为,甲公司知道该事项而不作否认表示的,王某所为的代理行为的法律后果应由甲公司承担。()
《国家中长期教育改革和发展规划纲要(2010一2020年)》提出,教育改革发展的战略主题是()。(2016年下半年真题)
明代的__________得到很大发展,代表作品是《斗彩鸡缸杯》。
教育史上,首创“没有书本的学校”,被人们誉为“幼儿园之父”的教育家为()。
标志着党和国家在指导思想上拨乱反正的胜利完成的是
LanguageFamiliesThereareover【1】languagesthatareusedthroughouttheworldtoday.Almostalloftheselanguagesbelongt
A、Theeffectofart.B、Thevalueoflearning.C、Theimportanceofcuriosity.D、Thepoweroffamilyeducation.A短文通篇介绍自己在艺术品博物馆的情
A、Tuesdaymorning.B、Tuesdayafternoon.C、Thursdaymorning.D、Thursdayafternoon.B男士说,葬礼在星期二举行,遗体吊唁仪式安排在下午,所以答案是B。对话提到两个时间点,星期二
最新回复
(
0
)