首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=aχ12+2χ22+2χ32+2b1χ3(b>0),其中二次型的矩阵A的特征值的和为1,特征值的乘积为-12。 (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型化为标准形,并写出所作的正交变换和对应的正交矩阵
设二次型f(χ1,χ2,χ3)=aχ12+2χ22+2χ32+2b1χ3(b>0),其中二次型的矩阵A的特征值的和为1,特征值的乘积为-12。 (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型化为标准形,并写出所作的正交变换和对应的正交矩阵
admin
2017-11-30
68
问题
设二次型f(χ
1
,χ
2
,χ
3
)=aχ
1
2
+2χ
2
2
+2χ
3
2
+2b
1
χ
3
(b>0),其中二次型的矩阵A的特征值的和为1,特征值的乘积为-12。
(Ⅰ)求a,b的值;
(Ⅱ)利用正交变换将二次型化为标准形,并写出所作的正交变换和对应的正交矩阵。
选项
答案
(Ⅰ)二次型f对应的矩阵为A=[*] 设A的特征值λ
1
,λ
2
,λ
3
满足题中所给条件,则 λ
1
+λ
2
+λ
3
=a+2-2=1,λ
1
λ
2
λ
3
=|A|=-4a-2b
2
=-12。 解得a=1,b=±2,已知b>0,因此a=1,b=2。 (Ⅱ)由矩阵A的特征多项式 |λE-A|=[*] =(λ-2)(λ
2
+λ-6) =(λ-2)
2
(λ+3)。 解得A的三个特征值分别为2,2,-3。 由(2E-A)χ=[*] 可求得属于特征值2的特征向量有两个,分别为ξ
1
=(0,1,0)
T
,ξ
2
=(2,0,1)
T
。 由(-3E-A)χ=[*] 可求得属于特征值-3的特征向量为ξ
3
(1,0,-2)
T
。 由于A的三个特征向量已经两两正交,因此只需要单位化,即 [*] 可得正交矩阵 Q=(η
1
,η
2
,η
3
)=[*] 令X=Qy.则有 f=χ
T
Aχ=y
T
Q
T
AQy=[*] =2y
1
2
+2y
2
2
-3y
3
2
解析
转载请注明原文地址:https://kaotiyun.com/show/bfr4777K
0
考研数学一
相关试题推荐
求函数f(x,y)=x2一xy+y2在点M(1,1)沿与x轴的正向组成a角的方向1上的方向导数,在怎样的方向上此导数有:(1)最大的值;(2)最小的值;(3)等于0.
因x=一[(1一x)一1],从而可凑微分法.[*]
求矢量穿过曲面∑的通量,其中三为曲线绕z轴旋转一周所形成旋转曲面的外侧在1≤z≤2间部分.
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.
设随机变量X,Y相互独立,且,又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).求Z=UV的分布;
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设直线L:求该旋转曲面介于z=0与z=1之间的几何体的体积.
设a1,a2,…,am为正数(m≥2),则=_________。
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段.计算曲线积分I=∫L3x2ydx+(x3+x一2y)dy.
随机试题
6名学生的语文成绩分别是70,60,73,72,85,84。求这6名学生的平均分。
投资者购入一张面值为50000元的银行承兑汇票,离到期日还有90天,贴现率为5%。投资者持有60天后卖出,此时贴现率下降为4.5%。计算投资者出售时的汇票价格,以及投资收益率。
绞窄性肠梗阻的腹痛特点是
当光照增强时,瞳孔缩小,此反射称为
A.窦性心动过速B.室上性心动过速C.交界区性心动过速D.室性心动过速E.快速房颤心率160次/分,QRS波群正常、其后有P波.且P波在aVR导联直立,在Ⅱ、Ⅲ导联倒置。提示
女性患者,40岁,于指背和掌面出现境界不清的皮损,角化明显,有浸润增厚,伴有皲裂,指甲变厚,冬重夏轻,考虑为
胶囊剂具有如下哪些特点()。
下列关于遗嘱的说法错误的是( )。
在高管层的领导下,风险管理部门负责的工作主要有()。
下列描述最可能代表专家型教师特征的是()。(2014·陕西)
最新回复
(
0
)