首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明: (1)存在c∈(0,1),使得f(c)=1-2c; (2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明: (1)存在c∈(0,1),使得f(c)=1-2c; (2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
admin
2018-05-22
22
问题
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:
(1)存在c∈(0,1),使得f(c)=1-2c;
(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
选项
答案
(1)令φ(x)=f(x)-1+2x,φ(0)=-1,φ(1)=2,因为φ(0)φ(1)<0,所以存在c∈(0,1),使得φ(c)=0,于是f(c)=1-2c. (2)因为f(x)∈C[0,2],所以f(x)在[0,2]上取到最小值m和最大值M, 由6m≤2f(0)+f(1)+3f(2)≤6M得m≤[*]≤M, 由介值定理,存在ξ∈[0,2],使得[*]=f(ξ), 于是2f(0)+f(1)+3f(2)=6f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/blk4777K
0
考研数学二
相关试题推荐
设有齐次线性方程组Ax=0和Ax=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Ax=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A
曲线的渐近线方程为_______.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
反常积分=_______。
如图1—3—12,连续函数y=(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt出,则下列结论正确的是
确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
已知累次积分其中a>0为常数,则,可写成
设A是3阶非零矩阵,满足A2=0,则线性非齐次方程组Ax=b(易≠0)的线性无关解向量的个数是_______.
随机试题
A.《实验室生物安全通用要求》B.《微生物实验室生物安全通用准则》C.《医学实验室—安全要求》D.《实验室生物安全手册》E.《实验室生物安全指南》WHO制定的生物安全指南是
下列方法中不能用于增加药物溶解度的是()
(2010年)幂级数的收敛域是()。
某施工合同履行过程中,因施工需要临时中断道路交通,发包人委托承包人办理申请批准手续。因工程所处路段交通流量大,全天中断交通的要求未获批准,承包人只能在夜间断续施工,则由此造成的承包人损失应由( )。
期望值是大量重复事件中随机变量取值的平均值,下列关于期望值的计算公式E(x)=xipi中各参数含义的表述,错误的是()。
全球气候变暖是世界各国所关注的问题.大气中能产生温室效应的气体已经发现近30种.造成温室效应最重要的气体是()。
农场有大型和中型两种联合收割机共8台,一台大型收割机每小时能收割16亩麦田,一台中型收割机每小时能收割12亩麦田,周一至周五每天都工作8小时,周六和周日只有中型收割机每天工作4小时,正好将农场全部4928亩麦田收割完毕。问:该农场共有中型收割机多少台?
《天津条约》的通商口岸中,位于我国最北和最南的城市分别是()。
实行责任内阁制的宪法性文件有()。
Therearemanywaysusedincommunication.Theprintedwordisjustaboutthemostimportantwaywehave【C1】______communicating
最新回复
(
0
)