首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
admin
2014-01-26
45
问题
设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数k,必有
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关.
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关.
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关.
答案
A
解析
[分析] 向量组的线性相关性可通过向量组的秩来确定,若向量组的秩等于向量组中向量的个数,则向量组线性无关.本题向量组中的向量含有常数,也可取特殊的值排除错误选项.
[详解1] 由题设知α
1
,α
2
,α
3
,β
1
线性无关,且存在k
1
,k
2
,k
3
使
β
1
=k
1
α
1
+k
2
α
1
+k
3
α
3
,
于是通过初等列变换有
(α
1
,α
2
,α
3
,kβ
1
+β
2
)=(α
1
,α
2
,α
3
,kk
1
α
2
+kk
2
α
2
+kk
3
α
3
+β
2
)-(α
1
,α
2
,α
3
,β
2
),
因此
r(α
1
,α
2
,α
3
,kβ
1
+β
2
)=r(α
1
,α
2
,α
3
,β
2
)=4,
故α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
[详解2] 取k=0,由条件知向量组α
1
,α
2
,α
3
线性:无关,α
1
,α
2
,α
3
,β
1
线性相关,所以应排除(B)、(C).
取k=1,因β可由α
1
,α
2
,α
3
线性表示,β不能由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,β
1
+β
2
线性无关,因而可排除(D).
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/6Q34777K
0
考研数学二
相关试题推荐
(96年)设f(χ)在区间[0,1]上可微,且满足条件f(1)=χf(χ)dχ,试证:存在ξ∈(0,1),使f(ξ)+ξf′(ξ)=0.
(11年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
[*]
(1996年)设某种商品的单价为P时,售出的商品数量Q可以表示成.其中a、b、c均为正数,且a>bc.1)求P在何范围变化时,使相应销售额增加或减少;2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
(03年)设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正
(2007年)曲线渐近线的条数为()
(2018年)设平面区域D由曲线及y轴围成,计算二重积分
计算二重积分|x2+y2-1|dσ,其中D={(x,y)|0≤x≤1,(0≤y≤1}。
设f(x)在[0,1]上连续,在(0,1)内可导,且,当x∈(0,1)时,f′(x)>0,试讨论f(0)以及f(1)之间的大小关系,并说明理由.
求极限
随机试题
设有自动喷水灭火系统的下列建筑中,宜设消防排水设施的是:[2010年第65题]
需求拉上的通货膨胀可以通俗地表述为()。
下列关于美术课程创设问题情境的表述,正确的是()。
[*]
第1房间孔位于()
男孩,10个月,母乳加米糕喂养,未添加其他辅食,近2个月来患儿面色苍白,食欲减退,肝脾轻度肿大,Hb80g/L,RBC3.5×1012/L,WBC正常。本病治疗的早期有效指标是
以下业务或事项中,应使用未来现金流量现值计量属性的有()。
根据资料,回答下列问题。根据调查结果测算,家庭平均消费率在76%左右,城市家庭消费率为77.6%,高于农村家庭的74.1%,说明城市家庭的即期消费倾向要略高于农村。调查结果表明,不论城市还是农村,家庭消费率随着收入增加而递减。低收入家庭消费率高达
联系实际谈谈3~4岁幼儿心理发展的年龄特征。
E-mail地址格式表示正确的是()。
最新回复
(
0
)