首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 证明向量β1,β2,β3为R3的一个基;
设向量组α1,α2,α3为R。的一个基.β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 证明向量β1,β2,β3为R3的一个基;
admin
2018-07-31
31
问题
设向量组α
1
,α
2
,α
3
为R。的一个基.β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
证明向量β
1
,β
2
,β
3
为R
3
的一个基;
选项
答案
将已知的线性表示式写成矩阵形式,得 (β
1
,β
2
,β
3
)=(2α
1
+2kα
3
,2α
2
,α
1
+(k+1)α
3
)=(α
1
,α
2
,α
3
)P 其中矩阵P=[*],由于P的行列式|P|一4≠0,所以P可逆, 故向量组β
1
,β
2
,β
3
(线性无关)可作为R
3
的基.
解析
转载请注明原文地址:https://kaotiyun.com/show/c5g4777K
0
考研数学一
相关试题推荐
α1=,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
求
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件的
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
随机试题
对于高水平速录师来说,同步校对主要是针对()进行校对。
《公务员法》是关于公务员的法律。
A.经口感染B.经血行播散感染C.经淋巴道感染D.腹腔内病灶直接蔓延结核性腹膜炎的主要感染途径是
关于水的需要量,下列说法正确的是
下列选项中,不属于牙的功能的是
甲、乙、丙三人设立了一合伙企业,其中甲为有限合伙人,根据《合伙企业法》的规定,下列说法中哪些是不正确的?
2005年我国滨海旅游业继续保持强劲的增长态势,全年滨海旅游收入5052亿元,增加值2031亿元,比上年增长32.4%。全国滨海周内旅游收入3887亿元,比上年增加1391亿元。海洋交通运输业继续保持良好的发展态势,2005年营运收入达2940亿元,占全国
设随机变量X的概率密度为fX(x)=,求Y=eX的概率密度fX(y).
Didthemanhaveahadheadache?
A、Kidsshouldspendmoretimeoutdoors.B、Kidsallliketreesandflowers.C、Kidsmaylearnbetteringreennature.D、Kidsshoul
最新回复
(
0
)