首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
admin
2022-10-09
77
问题
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
选项
答案
先作一个函数P(x)=ax
3
+bx
2
+cx+d,使得P(0)=f(0)=1,P’(1)=f’(1)=0,P(2)=f(2)=5/3,P(1)=f(1).则P(x)=x
3
/3+[1/3-f(1)]x
2
+[2f(1)-5/3]+1,令g(x)=f(x)=P(x),则g(x)在[0,2]上三阶可导,且g(0)=g(1)=g(2)=0,所以存在c
1
∈(0,1),c
2
∈(1,2),使得g’(c
1
)=g’(1)=g’(c
2
)=0,又存在d
1
∈(c
1
,1),d
2
∈(1,c
2
)使得g"(d
1
)=g"(d
2
)=0,再由罗尔定理,存在ξ∈(d
1
,d
2
)∈(0,2),使得g’"(ξ)=0,而g’"(x)=f’"(x)-2,所以f’"(ξ)=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/n7R4777K
0
考研数学三
相关试题推荐
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵是否是正定矩阵.
设矩阵矩阵B=(kE+A)2,其中k为实数,求对角矩阵Λ,使B与Λ相似.并求k为何值时,B为正定矩阵.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足tr(A)=-6.AB=C,其中求出该二次型f(x1,x2,x3).
设矩阵已知A的一个特征值为3.试求y;
设二次型f=x12+x22+x32+2αx1x2+2βx2x3+2x1x3经正交变换x=Py化成f=y22+2y32,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无
设函数f(x)在(-∞,+∞)内满足f(x)=f(x-π)+sinx,且当x∈[0,π)时,f(x)=x,求[*]
随机试题
人口资源、人力资源、人才资源三者之间的数量关系为【】
不符合原红细胞特点的是
鉴别肝内胆汁淤滞性黄疸与肝外梗阻性黄疸最确切的方法是
光镜下见子宫颈粘膜上皮全层异型增生并延伸到腺体,病理性核分裂相多见,但病变尚未突破基底膜,应诊断为
药品不良反应是指()。
土地补偿费为该耕地被征收前3年平均年产值的()倍。
每股收益分析法是在考虑市场风险基础上,以公司市场价值为标准,进行资本结构优化。该方法主要用于对现有资本结构进行调整,适用于资本规模较大的上市公司资本结构优化分析。()
生产方过程平均大于AQL,应使用()抽样方案。
小马今年17岁,初中毕业后就没再上学。因为找不到工作,经常在社区游荡。父母对小马的这种状态很不满意,经常训斥责骂他;他也总觉得别人对他有很大的看法,走在路上总是感到他人都以异样的目光来看自己。为此,他经常会趁别人不注意时在社区搞一些破坏活动,甚至有的时候也
Iwasanxiouslyexpectedyourletter,andatlast【M1】______ithasreachedtome.Iamverygladtoknowthat【M2
最新回复
(
0
)