首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续且恒大于零, 其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。 证明当t>0时,。
设函数f(x)连续且恒大于零, 其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。 证明当t>0时,。
admin
2018-12-29
38
问题
设函数f(x)连续且恒大于零,
其中Ω
t
={(x,y,z)|x
2
+y
2
+z
2
≤t
2
},D
t
={(x,y)|x
2
+y
2
≤t
2
}。
证明当t>0时,
。
选项
答案
由于 [*] 要证明t>0时F(t)>[*],只需证明t>0时,[*],即 ∫
0
t
f(r
2
)r
2
dr∫
0
t
f(r
2
)dr—[∫
0
t
f(r
2
)rdr]
2
>0。 令 g(t)=∫
0
t
f(r
2
)r
2
dr∫
0
t
f(r
2
)dr—[∫
0
t
f(r
2
)rdr]
2
, 则 g′(t)=f(t
2
)∫
0
t
f(r
2
)(t—r)
2
dr>0, 故g(t)在(0,+∞)内单调增加。 因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0)=0。 因此,当t>0时,F(t)>[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cFM4777K
0
考研数学一
相关试题推荐
(87年)设则在x=a处
(92年)设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表出?证明你的结论.(2)α4能否由α1,α2,α3线性表出?证明你的结论.
(88年)设三次独立试验中,事件A出现的概率相等.若已知A至少出现一次的概率等于,则事件A在一次试验中出现的概率为_______.
设A,B,C是两两相互独立且三事件不能同时发生的事件,且P(A)=P(B)=P(C)=x,则使P(A∪B∪C)取最大值的x为()
已知(X,Y)在以点(0,0),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,对(X,Y)作4次独立重复观察,X+Y不超过1的出现次数为Z,则E(Z2)=________.
设f(x,y)是连续函数,则二次积分可写成()
设随机变量X的分布函数为F(x)=则a=______,b=_____,c=______.
设曲线积分∫Lxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的一阶导数,且φ(0)=0.计算曲线积分I=∫(0,0)(1,1)xy2dx+yφ(x)dy的值.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
设z=z(x,y)是由9x2一54xy+90y2一6yz一z2+18=0确定的函数,(Ⅰ)求证z=z(x,y)一阶偏导数并求驻点;(Ⅱ)求z=z(x,y)的极值点和极值.
随机试题
竹笋在我国主要产于________。
现代企业的会计制度具有国际通用规范的性质。()
A、 B、 C、 D、 C
关于抗疟药下列说法正确的是
以下对有关指标说法正确的是()。
台灯作为一个实体可由市场决定其生产量,这种需求量是()。
《尚书》是中国文学史上第一部记叙文和议论文。()
2019年9月23日,“()——庆祝中华人民共和国成立70周年大型成就展”开幕式在北京展览馆举行。中共中央政治局常委、国务院总理李克强出席开幕式并讲话。
Evidenceofthebenefitsthatvolunteeringcanbringolderpeoplecontinuestorollin."Volunteershaveimprovedphysicalands
Whenyourunyourhandsthroughyourlover’shair,you’reprobablynotthinkingaboutyourplaceinthesocialhierarchy.Givey
最新回复
(
0
)