首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B; 求可逆矩阵P,使得P-1AP=B.
设且A~B; 求可逆矩阵P,使得P-1AP=B.
admin
2017-08-31
52
问题
设
且A~B;
求可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE一A|=[*]=(λ+1)(λ一1)(λ一2)=0得A,B的特征值为λ
1
=一1,λ
2
=1,λ
3
=2. 当λ=一1时,由(一E—A)X=0即(E+A)X=0得ξ
1
=(0,一1,1)
T
; 当λ=1时,由(E—A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E—A)X=0得ξ
3
=(1,0,0)
T
,取P
1
=[*],则P
1
-1
AP
1
=[*]. 当λ=一1时,由(一E—B)X=0即(E+B)X=0得,η
1
=(0,1,2)
T
; 当λ=1时,由(E—B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,由(2E—B)X=0得η
3
=(0,0,1)
T
,取P
2
=[*],则 P
2
-1
BP
2
=[*]. 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/cGr4777K
0
考研数学一
相关试题推荐
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3问ξ1+ξ2是否是A的特征向量?说明理由;
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是____________.
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
设且A~B;求可逆矩阵P,使得P-1AP=B.
设且A~B;求a;
随机试题
VBA中打开“student”表的语句是()。
患儿男,5岁。半小时前因调皮,而被其家长粗暴地牵拉右前臂,随即出现右手臂剧烈疼痛,不敢活动,触摸或活动其右上肢时,患儿即大声哭闹。本病最可能的诊断是
Hadyoulistenedtomyadvice,you________allrightnow.
男,52岁,畏寒发热14天,查:体温39.5℃,血压75/50mmHg,右上肢可见瘀斑,双肺呼吸音粗,呼吸30次/min,肝肋下未扪及,脾肋下恰扪及;Hb112g/L,WBC18×109/L,PLT56×109/L。PT17秒(对照12秒),纤维蛋白原定量
长期服用苯妥英钠易引起的牙周组织疾病是
慢性病的自然史分为()阶段
有4个不同颜色的球放到不同编号的4个箱子里,不同的摆放方式共有________种。
Ihavenoticedthatchildrenarenotevenbeingschoolinsocialgraces.AtaSundaybrunch,aclownwasmakingballoonanimals
We’velongbeeneagertobelievethatmasteryofaskillisprimarilytheresultofhowmucheffortonehasputin.Extensivepr
Thebuilding______nextyearisourlibrary.
最新回复
(
0
)