首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
admin
2021-02-25
59
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且
,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ
2
)(arctanξ)f’(ξ)=-1.
选项
答案
令F(x)=e
f(x)
arctanx,x∈[0,1],则F(1)=π/4. 由定积分中值定理,存在x
0
∈(0,2/π),使(e
f(x
0
)
arctanx
0
) 2/π=1/2,即F(x
0
)=F(1) 显然F(x)在[x
0
,1]上满足罗尔定理条件,故至少存在一点[*],使f’(ξ)=0, 即 (1+ξ
2
)(arctanξ)f’(ξ)=-1.
解析
本题考查中值问题.根据所证结论的形式,应考虑使用罗尔定理,题设条件由定积分形式给出,提示辅助函数应为被积函数.
转载请注明原文地址:https://kaotiyun.com/show/cK84777K
0
考研数学二
相关试题推荐
设函数f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明:方程f(x)+f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形s的面积值为2。求函数f(x)。并问a为何值时,图形S绕x轴旋转一周所得旋转体的体积最小.
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为_______.
设z=xf(u)+g(u),,且f(u)及g(u)具有二阶连续导数,则=______。[img][/img]
求下列方程通解或满足给定初始条件的特解:1)y+1=χeχ+y.2)χ+χ+sin(χ+y)=03)y′+ytanχ=cosχ4)(1+χ)y〞+y′=05)yy〞-(y′)2=y4,y(0)=1,y′(0
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化.
随机试题
()是指由专门的学前教育机构实施的,根据社会的要求和学前儿童身心发展的特点和需要,对学前儿童实施有目的、有计划、有组织的影响,使之能够在德、智、体、美等方面都得到全面、和谐发展的教育活动的总和。
下列选项中,除()以外均为出卖人的标的物存在权利瑕疵。
一种以提供选择权的交易合约,购买合约的人可以获得一种在指定时间内按协议价格买进或卖出一定数量的某种金融资产的权利。这种金融工具称之为()。
甲公司实行累积带薪缺勤货币补偿制度,补偿金额为放弃带薪休假期间平均日工资金额的3倍。2019年,甲公司有20名销售人员放弃5天的带薪休假,该公司平均每名职工每个工作日工资为100元。则甲公司因这20名员工放弃年休假应确认的成本费用总额为(
某教师为了让学生们认识到只有学好化学知识,才能解决生活中的实际问题,在教学过程中利用多媒体展示“南极臭氧空洞”的图片、环保部门对大气检测的资料片,以及机动车辆尾气排放图片、工厂排放废气而产生“浓烟滚滚”的景象等。该情境属于()。
简述感觉的特性。
某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目并制成如图所示的扇形统计图,如果该校有1200名学生,则喜爱跳绳的学生约有__________人.
Iwon’tbemodest.IamgratifiedtodiscoverthatapaperIpennedoninequalitymadeitswayintoMattMiller’sWashingtonPos
在微型计算机中,应用最普遍的字符编码是
Theconceptofpersonalchoiceinrelationtohealthbehaviorsisanimportantone.Anestimated90percentofallillnessesmay
最新回复
(
0
)