首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
admin
2021-02-25
38
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且
,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ
2
)(arctanξ)f’(ξ)=-1.
选项
答案
令F(x)=e
f(x)
arctanx,x∈[0,1],则F(1)=π/4. 由定积分中值定理,存在x
0
∈(0,2/π),使(e
f(x
0
)
arctanx
0
) 2/π=1/2,即F(x
0
)=F(1) 显然F(x)在[x
0
,1]上满足罗尔定理条件,故至少存在一点[*],使f’(ξ)=0, 即 (1+ξ
2
)(arctanξ)f’(ξ)=-1.
解析
本题考查中值问题.根据所证结论的形式,应考虑使用罗尔定理,题设条件由定积分形式给出,提示辅助函数应为被积函数.
转载请注明原文地址:https://kaotiyun.com/show/cK84777K
0
考研数学二
相关试题推荐
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
(2013年)当χ→0时,1-cosχ.cos2χ.cos3χ与aχn为等价无穷小,求n与a的值.
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(1990年)求微分方程y〞+4y′+4y=eaχ之通解,其中a为实数.
函数的间断点及类型是()
半圆形闸门半径为R(米),将其垂直放入水中,且直径与水面齐,设水密度ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P为()
设z=f(χ2+y2,χy,χ),其中f(u,v,w)二阶连续可偏导,求.
设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且求该方程组的通解.
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求A的特征值与特征向最;
随机试题
【B1】【B7】
妊娠合并贫血的类型有
痰饮脾阳虚弱证,宜选用
外感风寒表证的寒热特征是外感风热表证的寒热特征是
为了完成特定目标而设置的人的职务及其关系的结构称为( )。
1998年8月,上海期货交易所由()、上海粮油商品交易所和上海商品交易所合并组建而成,于1999年12月正式运营。
其他条件不变,在银行存在正缺口和资产敏感的情况下,下列表述正确的是()。Ⅰ.利率上升,净利息收入增加Ⅱ.利率上升,净利息收入减少Ⅲ.利率下降,净利息收入上升Ⅳ.利率下降,净利息收入下降
企业取得的下列款项中,符合“收入”定义的是()。
11世纪中叶,一批激进的克吕尼派修士强调教皇的至高无上的地位,在全西欧范围内向世俗政权、向国王进攻,这就是所谓的()。
支持子程序调用的数据结构是
最新回复
(
0
)