首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
admin
2019-08-01
52
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。
证明在[-a,a]上至少存在一点η,使a
3
f"(η)=3∫
-a
a
f(x)dx。
选项
答案
方法一:将f(x)从-a到a积分 ∫
-a
a
f(x)dx=∫
-a
a
f’(0)xdx+1/2∫
-a
a
f"(ξ)x
2
dx。 而∫
-a
a
f’(0)xdx=f’(0)∫
-a
a
xdx=f’(0)×[*]|
-a
a
=0, 从而有∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx。 因f"(x)在[-a,a]上连续,故有f"(x)在[-a,a-]上存在最大值M,最小值m(由闭区间上的连续函数必有最大值和最小值),即 [*] 易得m≤f"(x)≤M,x∈[-a,a]。 因此∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≤1/2M∫
-a
a
x
2
dx=1/2Mx
3
/3|
-a
a
=Ma
3
/3, 同理∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≥1/2m∫
-a
a
x
2
dx=1/3ma
3
。 因此m≤3/a
3
∫
-a
a
f(x)dx≤M。 由连续函数介值定理知,存在η∈[-a,a],使 f"(η)=3/a
3
∫
-a
a
f(x)dx, 即a
3
f"(η)=3∫
-a
a
f(x)dx。 方法二:观察要证的式子,构造变限函数:F(x)=∫
-x
x
f(t)dt,易得F(0)=0, F’(x)=f(x)+f(-x)(变限积分求导), F"(x)=[f(x)+f(-x)]’=f’(x)-f’(-x), F"’(x)=[f’(x)-f’(-x)]’=f"(x)+f"(-x), 则有F’(0)-f(0)+f(-0)-0+0=0, F"(0)-f’(0)-f’(-0)=f’(0)-f’(0)=0。 将它展开成二阶带拉格朗日余项麦克劳林公式: F(x)=F(0)+F’(0)x+[*]F"(0)x
2
+[*]F"’(ξ)x
3
=0+0+[*]F"’(ξ)x
3
=1/6[f"(ξ)+f"(-ξ)]x
3
, 其中ξ∈(0,x),x∈[-a,a]。 由于f"(x)在[-a,a]上连续,则由连续函数介值定理,存在η∈[-ξ,ξ],使 f"(η)=1/2[f"(ξ)+f"(-ξ)], 于是存在η∈(-a,a),使 F(x)=0+0+[*]F"’(ξ)x
3
=[*][f"(ξ)+f"(-ξ)]x
3
=1/3f"(η)x
3
, 把x=a代入F(x)有F(a)=1/3f"(η)a
3
即 ∫
-a
a
f(x)dx=a
3
/3f"(η),η∈(-a,a), 即a
3
f"(η)=3∫
-a
a
f(x)dx,η∈(-a,a)。
解析
转载请注明原文地址:https://kaotiyun.com/show/HJN4777K
0
考研数学二
相关试题推荐
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)可导且f(x)≠0,则=__________.
设a为常数,求
设f(x)在x=a处可导,且f(a)=1,f’(a)=3,求数列极限
给定曲线y=x2+5x+4,(Ⅰ)确定b的值,使直线y=x+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
积分∫aa+2πcosxln(2+cosx)dx的值
设A是3阶实对称矩阵,特征值是0,1,2.如果α1=(1,2,1)T与α2=(1,-1,1)T分别是λ=0与λ=1的特征向量,则λ=2的特征向量是_____.
设f(x)在[a,b]有连续的导数,求证:|∫abf(x)dx|+∫ab|f’(x)|dx.
设f(x)=∫xx+π/2|sint|dt。求f(x)的值域。
随机试题
滑动轴承的摩擦状态大多数情况下处于()。
都是联绵词的一组是()
A.alotofmoneyB.expresspublicfeelingonlocalissuesC.morningD.localpeopleE.nationalissuesF.localissuesMany
冠状动脉CTA在临床应用广泛,关于冠状动脉CTA。冠状动脉CTA的适应证错误的是
商业银行贷给同一借款人的贷款金额不得超过银行资本金额的( )。
基金托管人应当履行的职责包括()等。
在收容教养期间,对被收容教养的未成年人实行( )方针。
根据所给材料,回答下面问题
建设生态文明,必须保护生态环境。保护生态环境的根本之策是
Inthepastdecade,newscientificdevelopmentsincommunicationshavechangedthewaymanypeoplegatherinformationaboutpoli
最新回复
(
0
)