首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
admin
2019-08-01
77
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。
证明在[-a,a]上至少存在一点η,使a
3
f"(η)=3∫
-a
a
f(x)dx。
选项
答案
方法一:将f(x)从-a到a积分 ∫
-a
a
f(x)dx=∫
-a
a
f’(0)xdx+1/2∫
-a
a
f"(ξ)x
2
dx。 而∫
-a
a
f’(0)xdx=f’(0)∫
-a
a
xdx=f’(0)×[*]|
-a
a
=0, 从而有∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx。 因f"(x)在[-a,a]上连续,故有f"(x)在[-a,a-]上存在最大值M,最小值m(由闭区间上的连续函数必有最大值和最小值),即 [*] 易得m≤f"(x)≤M,x∈[-a,a]。 因此∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≤1/2M∫
-a
a
x
2
dx=1/2Mx
3
/3|
-a
a
=Ma
3
/3, 同理∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≥1/2m∫
-a
a
x
2
dx=1/3ma
3
。 因此m≤3/a
3
∫
-a
a
f(x)dx≤M。 由连续函数介值定理知,存在η∈[-a,a],使 f"(η)=3/a
3
∫
-a
a
f(x)dx, 即a
3
f"(η)=3∫
-a
a
f(x)dx。 方法二:观察要证的式子,构造变限函数:F(x)=∫
-x
x
f(t)dt,易得F(0)=0, F’(x)=f(x)+f(-x)(变限积分求导), F"(x)=[f(x)+f(-x)]’=f’(x)-f’(-x), F"’(x)=[f’(x)-f’(-x)]’=f"(x)+f"(-x), 则有F’(0)-f(0)+f(-0)-0+0=0, F"(0)-f’(0)-f’(-0)=f’(0)-f’(0)=0。 将它展开成二阶带拉格朗日余项麦克劳林公式: F(x)=F(0)+F’(0)x+[*]F"(0)x
2
+[*]F"’(ξ)x
3
=0+0+[*]F"’(ξ)x
3
=1/6[f"(ξ)+f"(-ξ)]x
3
, 其中ξ∈(0,x),x∈[-a,a]。 由于f"(x)在[-a,a]上连续,则由连续函数介值定理,存在η∈[-ξ,ξ],使 f"(η)=1/2[f"(ξ)+f"(-ξ)], 于是存在η∈(-a,a),使 F(x)=0+0+[*]F"’(ξ)x
3
=[*][f"(ξ)+f"(-ξ)]x
3
=1/3f"(η)x
3
, 把x=a代入F(x)有F(a)=1/3f"(η)a
3
即 ∫
-a
a
f(x)dx=a
3
/3f"(η),η∈(-a,a), 即a
3
f"(η)=3∫
-a
a
f(x)dx,η∈(-a,a)。
解析
转载请注明原文地址:https://kaotiyun.com/show/HJN4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b).使得|f’’(ξ)|≥|f(b)-f(a)|.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
已知矩阵A=有两个线性无关的特征向量,则a=_____.
计算下列反常积分:(Ⅰ)∫1+∞(Ⅱ)∫1+∞(Ⅲ)∫0+∞(Ⅳ)∫0a
计算下列定积分:
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u5-5xy+5u=1确定.求
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
[2006年]设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是().
随机试题
A.化生血液B.促进生长发育C.推动气血的运行D.维持体温的相对恒定E.温养脏腑、肌肉、皮毛营气的生理功能是
某房地产估价师运用市场法和假设开发法对一宗4270m2的商业用地于2007年10月21日的土地使用权价格进行评估,该宗地的剩余使用期限为39年,两种估价方法测算出的结果分别为2000元/m2和2300元/m2。假设2006年10月和2007年10月该区域的
下列影响能力的因素中,()是智力结构转化为物质力量的转换器。
既属于监理工程师应遵守的职业道德,又属于监理工程师义务的是( )。
振动水冲法是利用振冲器的振动和水冲作用加固地基的一种方法,可分为()。
下列关于证券公司设立以及重要事项变更审批要求说法正确的是()
非同一控制下的企业合并,下列说法中正确的有()。
文化馆、图书馆、博物馆、民风民俗等都可以作为课程资源。()
公文标题《国务院关于同意建立不动产登记工作部际联席会议制度的批复》的形式是()。
根据下面材料回答下题。自20世纪末期,山西同全国一样粮食供需形势发生逆转,粮价持续走低,粮食生产效益滑坡,农民生产积极性受挫。2004年年初,中央下发“一号文件”,实施了“一减三补”等一系列惠农政策,之后连续三年出台中央“一号文件”,“保护和加强
最新回复
(
0
)