首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。 证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
admin
2019-08-01
33
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。
证明在[-a,a]上至少存在一点η,使a
3
f"(η)=3∫
-a
a
f(x)dx。
选项
答案
方法一:将f(x)从-a到a积分 ∫
-a
a
f(x)dx=∫
-a
a
f’(0)xdx+1/2∫
-a
a
f"(ξ)x
2
dx。 而∫
-a
a
f’(0)xdx=f’(0)∫
-a
a
xdx=f’(0)×[*]|
-a
a
=0, 从而有∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx。 因f"(x)在[-a,a]上连续,故有f"(x)在[-a,a-]上存在最大值M,最小值m(由闭区间上的连续函数必有最大值和最小值),即 [*] 易得m≤f"(x)≤M,x∈[-a,a]。 因此∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≤1/2M∫
-a
a
x
2
dx=1/2Mx
3
/3|
-a
a
=Ma
3
/3, 同理∫
-a
a
f(x)dx=1/2∫
-a
a
f"(ξ)x
2
dx≥1/2m∫
-a
a
x
2
dx=1/3ma
3
。 因此m≤3/a
3
∫
-a
a
f(x)dx≤M。 由连续函数介值定理知,存在η∈[-a,a],使 f"(η)=3/a
3
∫
-a
a
f(x)dx, 即a
3
f"(η)=3∫
-a
a
f(x)dx。 方法二:观察要证的式子,构造变限函数:F(x)=∫
-x
x
f(t)dt,易得F(0)=0, F’(x)=f(x)+f(-x)(变限积分求导), F"(x)=[f(x)+f(-x)]’=f’(x)-f’(-x), F"’(x)=[f’(x)-f’(-x)]’=f"(x)+f"(-x), 则有F’(0)-f(0)+f(-0)-0+0=0, F"(0)-f’(0)-f’(-0)=f’(0)-f’(0)=0。 将它展开成二阶带拉格朗日余项麦克劳林公式: F(x)=F(0)+F’(0)x+[*]F"(0)x
2
+[*]F"’(ξ)x
3
=0+0+[*]F"’(ξ)x
3
=1/6[f"(ξ)+f"(-ξ)]x
3
, 其中ξ∈(0,x),x∈[-a,a]。 由于f"(x)在[-a,a]上连续,则由连续函数介值定理,存在η∈[-ξ,ξ],使 f"(η)=1/2[f"(ξ)+f"(-ξ)], 于是存在η∈(-a,a),使 F(x)=0+0+[*]F"’(ξ)x
3
=[*][f"(ξ)+f"(-ξ)]x
3
=1/3f"(η)x
3
, 把x=a代入F(x)有F(a)=1/3f"(η)a
3
即 ∫
-a
a
f(x)dx=a
3
/3f"(η),η∈(-a,a), 即a
3
f"(η)=3∫
-a
a
f(x)dx,η∈(-a,a)。
解析
转载请注明原文地址:https://kaotiyun.com/show/HJN4777K
0
考研数学二
相关试题推荐
曲线的渐近线的条数为().
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s-1,βs=αs+α1.判断β1,β2,…,βs线性相关还是线性无关?
给定曲线y=x2+5x+4,(Ⅰ)确定b的值,使直线y=x+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
求下列极限:
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
求从点A(10,0)到抛物线y2=4x的最短距离.
(1)设0<x<+∞,证明存在η,0<η<1,使(2)求出(1)中η关于x的具体函数表达式η=η(x),并求出当0<x<+∞时,函数η(x)的值域.
[2006年]广义积分∫0+∞=_________.
设f(a)=,试求:(Ⅰ)函数f(a)的定义域;(Ⅱ)函数f(a)的值域.
随机试题
某老师未经学生允许私自将学生的作文编入自己编著的优秀作文集。对于该老师的做法,下列叙述正确的是()。
阴道毛滴虫在pH小于6或大于8.5的环境中不生长。()
下列物质中不属于高能化合物的是
套内建筑面积由()组成。
在饮用水地表水源准保护区内以下行为属于被禁止的是()。
银行市场环境分析的主要任务按顺序排列为()。
下列关于个人贷款支付的相关规定,说法错误的是()。
在()遗址的一所房子的地面上画有两个成人和一个小孩,学术界普遍认为这是一组表现某种宗教仪式的画面。
设a>0,b>0,均为常数,则=________。
日本人とかいぎをすると、すぐに「それはほんしゃとそうだんして」と言われるからだその場できめてくれない。会議に出ているのはしゃいんばかりではない。社長でさえ、いや日本のしゅしょうでさえ、その場で一人で決めることはできないのである。まわりの人々と相談
最新回复
(
0
)