首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知f(x)在[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.证明:f(x)在区间(0,)内存在唯一零点.
[2016年] 已知f(x)在[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.证明:f(x)在区间(0,)内存在唯一零点.
admin
2019-04-05
48
问题
[2016年] 已知f(x)在[0,
]上连续,在(0,
)内是函数
的一个原函数,f(0)=0.证明:f(x)在区间(0,
)内存在唯一零点.
选项
答案
先证f(x)在(0,[*])内无零点,再证在[*]内有唯一零点,为此证f(x)在该区间内单调,且[*]<0. 证 (II):因f'(x)=[*],当x∈(0,[*])时,2x一3π<0,故f'(x)<0.所以当x∈(0,[*])时,f(x)单调减少,而f(0)=0,故当x∈(0,[*])时,f(x)<f(0)=0, 即f(x)在(0,[*])内无零点. 因x∈(0,[*])时,f(x)单调减少,故f([*])<f(0)=0. 知,f(x)在区间[*]上的平均值为[*] 又x∈[*]时,f'(x)=[*]而cosx<0,2x一3π<0,故f'(x)>0, 即x∈[*]时,f(x)单调增加,设f(x)在[*]内的平均值为[*],则 [*]内f(x)<0)>0. 因f(x)在[*]单调增加,且f[*]<0,由命题1.1.7.5知,在该区间内f(x)有唯一零点,而f(x)在(0,[*])内无零点,因而f(x)在(0,[*])内有唯一零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/cXV4777K
0
考研数学二
相关试题推荐
求曲线y=的一条切线l,使该曲线与切线l及直线x=0,x=2所围成图形的面积最小.
计算二重积分,其中D是由x轴,y轴与曲线所围成的区域,a>0,b>0。
求曲线y=+ln(1+ex)的渐近线方程.
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
求极限
(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
[2003年]设三阶方阵A,B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则∣B∣=_________.
[2011年]已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分I=xyf″xy(x,y)dxdy.
(2013年)设曲线L的方程为y=(1≤χ≤e)(Ⅰ)求L的弧长;(Ⅱ)设D是由曲线L,直线χ=1,χ=e及χ轴所围平面图形.求D的形心的横坐标.
随机试题
乳腺癌的组织学类型包括
以下不属于老年人继发肾病综合征的常见病因是
插入的图片无法显示,或者显示失真,正确做法是().
提单上的货物名称,可作一般概括性的描述,不必列出详细规格。()
我国的中央银行所实施的货币政策的目标包括()。Ⅰ.促进国际化Ⅱ.保持货币币值的稳定Ⅲ.促进经济增长Ⅳ.促进证券市场发展
钢筋混凝土悬挑雨篷的悬挑长度一般为()
【2014山东潍坊】学生在学习较长的内容时,经常是前边和后边的部分记忆效果好,中间部分遗忘较多,这是受()因素的干扰。
卫生间新装电子空气清新剂。其工作原理如下:通电后,电子空气清新剂将以某固定速度自动喷射,当空气中清新剂的浓度达到一定值(成为峰值)后自动停止。随着清新剂自由扩散,当含量降低到峰值的时,会再次启动喷射,问以下哪个图形能够反映通电后空气中每立方米清新剂的含量与
速率为10Gbps的Ethernet发送1bit数据需要的时间是()。
Aboutacenturyagomorepeoplewouldnothaveappreciatedthestudyofaforeignlanguageastheydotoday.Gonearethosedays
最新回复
(
0
)