首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 求曲线x3一xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离.
[2013年] 求曲线x3一xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离.
admin
2019-04-05
93
问题
[2013年] 求曲线x
3
一xy+y
3
=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离.
选项
答案
曲线上的点(x,y)到坐标原点的距离为d=[*],其最长距离d
max
与最短距离d
min
就是d=[*] 在条件x
3
一xy+y
3
=1(x≥0,y≥0)下的最大值与最小值.显然用拉格朗日函数法求之. 因d=[*]与f(x,y)=x
2
+y
2
在相同点取得最值,故可令拉格朗日函数为 F(x,y,λ)=x
2
+y
2
+λ(x
3
一xy+y
3
一1) 先求驻点,为此解方程组: [*]=2x+λ(3x
2
一y)=0, ① [*]=2y+λ(一x+3y
2
)=0, ② [*]=x
3
一xy+y
3
一1=0. ③ 将①×y
2
一②×x
2
得到2xy(y—x)+λ(x—y)(x
2
+xy+y
2
)=0,因此得到x=y. 将y=x代入式③得到 x
3
一x
2
+x
3
一1=x
2
(x一1)+(x一1)(x
2
+x+1)=0, 即(x一1)(2x
2
+x+1)=0,解得x=1. 得唯一驻点(1,1),又曲线是含端点的曲线段,端点(0,1)与(1,0)也很可能是最值点.比较函数值: d(0,1)=1,d(1,0)=1,d(1,1)=[*]. 因实际问题存在最长距离与最短距离,故最长距离为d
max
=√2,最短距离为d
min
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/LPV4777K
0
考研数学二
相关试题推荐
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
设函数f(x)连续,且∫0xtf(2x一t)dt=已知f(1)=1,求∫12f(x)dx的值.
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=arctaneχ-;(Ⅲ)设y=(χ-1),求y′,与y′(1).
求下列变限积分函数的导数:(Ⅰ)F(x)=,求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=,求F"(x)(-∞<x<+∞).
求曲线y=+ln(1+ex)的渐近线方程.
设常数α≤α<β≤b,曲线Γ:y=(χ∈[α,β])的孤长为l.(Ⅰ)求证:l=;(Ⅱ)求定积分J=.
给定曲线y=χ2+5χ+4,(Ⅰ)确定b的值,使直线y=-χ+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
随机试题
下列组织中属于国家行政机关的是()。
A,阵发性腹痛B,持续性腹痛C,两者都有D,两者都无胃十二指肠溃疡穿孔
患者,男,40岁,因大量蛋白尿,高度浮肿,因诊断为肾病综合征而入院治疗。肾穿活检病理为“微小病变型”,给予泼尼松60mg/d口服,症状有所控制。治疗3周后,又出现大量蛋白尿,双下肢浮肿加重,肾功能减退。此时首先应考虑为
下列具有受体酪氨酸蛋白激酶活性的是
后马托品丙胺太林
某水利枢纽工程由水闸、泵站、灌溉引水洞及堤防等建筑物组成。其中水闸共3孔,每孔净宽8m,采用平板钢闸门,闸门采用一台门式启闭机启闭。在施工过程中发生如下事件:事件一:为加强枢组工程施工质量与安全控制,施工单位设立安全生产管理机构,配备了专职安全生产管理
某公司是一家高新技术企业,目前正在进行股份制改造。公司高层决定以此为契机,对公司进行重新设计,并着力进行组织文化建设,以形成鼓励创新和民主参与的文化。为此,公司决定聘请某著名管理咨询公司帮助公司进行变革。双方商定,在组织结构设计中,应重点考虑公司战略、管理
下列有关我国税收执法权的表述中,正确的是()。
根据我国宪法的规定,下面不属于我国公民所享有的政治自由的是()。
汽车保险公司的统计数据显示:在所处理的汽车被盗索赔案中,安装自动防盗系统汽车的比例明显低于未安装此种系统的汽车。这说明,安装自动防盗系统能明显减少汽车被盗的风险。但警察局的统计数据却显示:在报案的被盗汽车中,安装自动防盗系统的比例高于未安装此种系统。这说明
最新回复
(
0
)