首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得f(ξ)=∫0ξf(t)dt.
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得f(ξ)=∫0ξf(t)dt.
admin
2017-07-10
58
问题
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得f(ξ)=∫
0
ξ
f(t)dt.
选项
答案
先证存在性. 令g(x)=f(x)一∫
0
x
f(t)dt,则g(x)在[0,1]上连续,又 g(0)=f(0)>0,g(1)=f(1)一∫
0
1
f(t)dt=∫
0
1
[f(1)-f(t))]dt<0. 由零点定理知,存在ξ∈(0,1)使得g(ξ)=0,即f(ξ)=∫
0
ξ
f(t)dt. 再证唯一性,用反证法. 假设存在ξ
1
,ξ
2
(ξ
1
≠ξ
2
)满足f(ξ)=∫
0
ξ
f(t)dt.不妨设ξ
1
<ξ
2
.显然g(ξ
1
)=g(ξ
2
)=0,由罗尔定理,存在η∈(ξ
1
,ξ
2
)使得g’(η)=0,即f’(η)-f(η)=0.这与条件f’(x)≠f(x)矛盾.即假设不成立.因此满足f(ξ)=∫
0
ξ
f(t)dt的ξ是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/cYt4777K
0
考研数学二
相关试题推荐
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
设生产x单位某产品的总成本C是x的函数C(x),固定成本(即C(0))为20元,边际成本函数为Cˊ(x)=2x+10(元/单位),求总成本函数C(x).
若f(x)是连续函数,证明
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
,证明你的结论。
求函数的单调区间与极值。
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103g/m3)
随机试题
A.胸大肌B.斜方肌C.三角肌D.小圆肌E.冈上肌只能外展肩关节的是()
阅读《寡人之于国也》中的一段文字,然后回答问题。“狗彘食人食而不知检,涂有饿莩而不知发;人死,则曰:‘非我也,岁也。’是何异于刺人而杀之,曰:‘非我也,兵也。’王无罪岁,斯天下之民至焉。”“狗彘食人食而不知检,涂有饿莩而不知发”反映了怎样的社
男性患者,68岁,突起剧烈压榨样胸痛、呕吐伴窒息感2小时入院。查心率110次/分,血压85/60mmHg,心电图示V1-V4导联ST段呈弓背向上抬高,律不齐。
某地某年8月发生了一起因食用由蛋、奶、糖制作的雪糕而引起的食物中毒,症状为腹痛、腹泻,大便如水样黄绿色便,少数患者有脓血便,部分患者体温为38~39℃,多数人潜伏期为12~24小时。最可能的食物中毒是
病室中有尸臭气是因()
图14—4—15所示结构,杆DE为刚性杆,当支座E下沉时,支座C的反力为()。
丰田生产方式中,控制各工序生产活动的信息系统工具是()。
下列各项中,应通过“应付职工薪酬”科目核算的有()。
下述程序功能为,将首地址为FIRST的字符串送到首地址为SECOND 的内存区;请用一条指令填空。 CLD LEA SI,FIRST LEA DI, ES:SECOND MOV CX,10 _______
(81)Thetwentiethcentury,perhapsmorethananyother,markedaperiodwherearchitectsexperimentedwithformandtooktheiri
最新回复
(
0
)