首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
admin
2021-02-25
80
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是Ax=0的基础解系.
选项
答案
证法1:由于 [*] 故β
1
,β
2
,β
3
,β
4
线性无关的充分必要条件是 [*] 即t≠±1时,β
1
,β
2
,β
3
,β
4
为Ax=0的基础解系. 证法2: 设k
1
,k
2
,k
3
,k
4
使 k
1
(α
1
+tα
2
)+k
2
(α
2
+tα
3
)+k
3
(α
3
+tα
4
)+k
4
(α
4
+tα
1
)=0, 即 (k
1
+tk
4
)α
1
+(tk
1
+k
2
)α
2
+(tk
2
+k
3
)α
3
+(tk
3
+k
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
线性无关,得 [*] 此方程组只有零解时,β
1
,β
2
,β
3
,β
4
才是Ax=0的基础解系.以下与“证法1”相同,即当t≠±1时,β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系.
解析
本题考查齐次线性方程组的基础解系的概念、解的性质和向量组线性相关性的证明方法,注意到β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系的充分必要条件是β
1
,β
2
,β
3
,β
4
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/ca84777K
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设f(x,y)在点0(0,0)的某邻域U内连续,且常数试讨论f(0,0)是否为f(x,y)的极值?若为极值,是极大值还是极小值?
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设y1(x),y2(x)是微分方程yˊˊ+pyˊ+qy=0的解,则由y1(x),y2(x)能构成方程通解的充分条件是().
随机试题
现代汉语名词在句子中主要充当主语、_____和_____。
FewwritersareasreveredasJaneAusten.AccordingtoapollinMarch,PrideandPrejudice—aromancewithoutasinglekiss—is
患者,女,34岁。右下后牙进食嵌塞痛2周,偶有喝冷水疼痛,无自发痛。检查:右下第一磨牙牙面深龋洞,冷测反应正常,冷刺激入洞出现一过性敏感,叩痛(-),去净腐质后洞底无穿髓孔。该患牙应做的治疗是
下列哪项不属于编制家庭收支储蓄表的重点()
交割是指合约到期时,按照期货交易所的规则和程序,交易双方通过该合约所载标的物( )的转移,或者按照规定结算价格进行现金差价结算,了结到期未平仓合约的过程。
我国公募发行的股票采用的是()方式。
1938年,德国人()在用慢中子轰击铀核时,首次发现了原子核的裂变现象,并放出新的中子。
试就常数k的不同取值,讨论方程xe-x一k=0的实根的个数.
LearningHowtoLearnI.ViewsonlearningA.Learningissomethingsonatural—wedon’teven【B1】______we’redoingit【B1】_____
A、Highpayandshortworkhours.B、Friendlyenvironmentandteamworkspirit.C、Relaxedatmosphereandvaluableexperience.D、Goo
最新回复
(
0
)