首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
admin
2021-02-25
58
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是Ax=0的基础解系.
选项
答案
证法1:由于 [*] 故β
1
,β
2
,β
3
,β
4
线性无关的充分必要条件是 [*] 即t≠±1时,β
1
,β
2
,β
3
,β
4
为Ax=0的基础解系. 证法2: 设k
1
,k
2
,k
3
,k
4
使 k
1
(α
1
+tα
2
)+k
2
(α
2
+tα
3
)+k
3
(α
3
+tα
4
)+k
4
(α
4
+tα
1
)=0, 即 (k
1
+tk
4
)α
1
+(tk
1
+k
2
)α
2
+(tk
2
+k
3
)α
3
+(tk
3
+k
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
线性无关,得 [*] 此方程组只有零解时,β
1
,β
2
,β
3
,β
4
才是Ax=0的基础解系.以下与“证法1”相同,即当t≠±1时,β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系.
解析
本题考查齐次线性方程组的基础解系的概念、解的性质和向量组线性相关性的证明方法,注意到β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系的充分必要条件是β
1
,β
2
,β
3
,β
4
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/ca84777K
0
考研数学二
相关试题推荐
设矩阵A、B的行数都是m.证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设b>a>e,证明:ab>ba.
设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
下列矩阵中两两相似的是
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设y1(x),y2(x)是微分方程yˊˊ+pyˊ+qy=0的解,则由y1(x),y2(x)能构成方程通解的充分条件是().
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
随机试题
(2011年4月)国务院专利行政部门可以给予实施发明专利或者实用新型专利的强制许可的情况有()()()()。
无穷级数1-1/3+1/5+…+(-1)n/2n+1的和为____________
具有升浮性质的性味是
在中脑上、下丘之间切断脑干的动物,将出现
低颅压性头痛的对症治疗包括
下列各项中除哪项之外均与乳疬无关
不管记账凭证编号由手工输入或自动产生,会计软件都应当确保凭证编号的连续性。()
所谓“现代化”,是用高新科技去保存一个民族最珍贵、最重要的东西,而不是适得其反地将过去连根拔起,慌忙移植一个外国的东西。所有对文化的保存都不是单纯为了缅怀过去,恰恰是为了未来,因为没有过去的人必然失去未来。这段文字主要是在强调()。
有以下程序:#include<stdio.h>main(){intx,y,z;x=y=1;z=x++,y++,++y;printf("%d,%d,%d\n",x,y,z);}程序运行后的输出结果是()。
Daniel:DanielVan,ProductPromotionDepartment.WhatcanIdoforyou?Brown:Promotion?Idon’twantpromotion,Iwantwhoeve
最新回复
(
0
)