首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,则在实数域上与A合同的矩阵为( )
设A=,则在实数域上与A合同的矩阵为( )
admin
2019-03-11
59
问题
设A=
,则在实数域上与A合同的矩阵为( )
选项
A、
B、
C、
D、
答案
D
解析
1 记D选项中的矩阵为D,则由
|λE-A|
=λ
2
-2λ-3=(λ-3)(λ+1),
|λE-D|
=λ
2
-2λ-3=(λ-3)(λ+1)
知A与D有相同的特征值3与-1,它们又都是实对称矩阵,因此存在正交矩阵P与Q,使P
T
AP=
=Q
T
DQ,
QP
T
APQ
T
=D,或(PQ
T
)A(PQ
T
)=D,其中PQ
T
可逆,所以A与D合同.
2 由于|A|=|D|=-3<0,因此实对称矩阵A的两个特征值异号(D亦是),从而知二次型x
T
Ax及二次型x
T
Dx有相同的规范形z
1
2
-z
2
2
,从矩阵角度讲,就是存在可逆矩阵C
1
,C
2
,使C
1
T
AC
1
=
=C
2
T
DC
2
,由此得(C
1
C
2
-1
)
T
A(C
1
C
2
-1
)=D,且C
1
C
2
-1
可逆,故A与D合同.
3 对于二次型f(x
1
,x
2
)=x
T
Ax=x
1
2
+4x
1
x
2
+x
2
2
,由于f(1,0)=1>0,f(-2,1)=-3<0,所以A是不定的.由顺序主子式法知备选项A、B、C中的矩阵分别是负定的、正定的、正定的,由于合同的矩阵有相同的正(负)定性,因此备选项A、B、C中的矩阵都不与矩阵A合同,只有备选项D正确(也易判定D中的矩阵是不定的).
转载请注明原文地址:https://kaotiyun.com/show/ckP4777K
0
考研数学三
相关试题推荐
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确。
判别下列正项级数的敛散性:(Ⅰ)(常数α>0,β>0).
(Ⅰ)由曲线y=lnx与两直线y=e+1一x及y=0围成平面图形的面积S=________;(Ⅱ)由曲线y=2x一与直线y=a及y轴在第一象限所围平面图形的面积是仅由曲线y=2x一及直线y=a所围图形面积的,则a=________.
设函数f(x)=试补充定义f(0)使得f(x)在(一∞,+∞)上连续.
已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
设f(x)可导,则当△x→0时,△y—dy是△x的().
随机试题
某电子商务企业经销家用小电器。某种品牌的小电器的年需求量为2500件,企业以单价200元从厂家购人。该种电器的订货量为300件,每件的延期付货成本为30元,年储存成本为单价的15%,前置时间为10天。前置时间内的需求量如下表所示。应保持多少保险存货?订货点
抗利尿激素分泌失调综合征最常见的病因是
患者,男性,62岁。骨折入院。血红蛋白63g/L,血清蛋白电泳呈现M蛋白带,血清IgG5.3g/L,IsA32.6g/L,IgM0.37g/L。X线检查显示骨质疏松,有溶骨性改变。为证实该诊断,还应进行的实验室检查是
慢性肾盂肾炎治疗的关键在于()。
企业在进行员工培训需求分析时,应把()作为企业员工培训的目标。
根据《著作权法》的规定,影视作品的著作权由()享有。
试简述卫星移动通信系统的优势和作用。
如图,正六边形ABCDEF中,=()。
WhenIwasakid,Ineverknewwhatmyparents—oranyoneelse—didforaliving.AsfarasIcouldtell,allgrownupshadmysteri
A、Somewitnessesfailedtoappearincourt.B、Thecasecauseddebateamongthepublic.C、Theaccusedwasfoundguiltyofstealin
最新回复
(
0
)