首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求齐次线性方程组的基础解系.
求齐次线性方程组的基础解系.
admin
2019-05-08
58
问题
求齐次线性方程组
的基础解系.
选项
答案
解一 用高斯消元法求之.对系数矩阵进行初等行变换化为行阶梯形矩阵 [*] 由非零行的第1个非零元素所在的列可知x
1
,x
2
,x
3
为独立变量,x
2
,x
3
为自由变量,则用自由变量表示的独立变量的等价方程组为 [*] 令x
2
=1,x
3
=0,代入方程组①得到解向量[x
1
,x
2
,x
3
,x
4
,x
5
]=[-1,1,0,0,0]
T
=α
1
. 令x
2
=0,x
5
=1,代入方程组①得到另一解向量[x
1
,x
2
,x
3
,x
4
,x
5
]
T
=[-1,0,-1,0,1]
T
=α
2
,该方程组的一个基础解系为 α
1
=[-1,1,0,0,0]
T
, α
2
=[-1,0,-1,0,1]
T
. 解二 用简便求法求之.为此,用初等行变换将A化成含最高阶单位矩阵的矩阵,即 [*] 其中A
1
已是含最高阶(三阶)单位矩阵的矩阵,而且含有2个三阶单位矩阵,第一个是在第1,2,3行,第1,3,4列;第2个是在第1,2,3行,第2,3,4列.为方便计,取第1个单位矩阵计算.除单位矩阵所在的列以外,A
1
中还有两列,因而一个基础解系含有2个解向量α
1
,α
2
.因第1个单位矩阵在第1,3,4列,故α
1
,α
2
的第1,3,4个元素分别为第2列、第5列的前3个元素反号, 即 α
1
=[-1,a
12
,-0,-0,a
15
]
T
=[-1,a
12
,0,0,a
15
]
T
, α
2
=[-1,a
22
,-1,-0,a
25
]
T
=[-1,a
22
,-1,0,a
25
]
T
. 而α
1
与α
2
中的第2、5个元素a
ij
(i=1,2;j=2,5)依次组成二阶单位矩阵[*]即α
1
=[-1,1,0,0,0]
T
,α
2
=[-1,0,-1,0,1]
T
为所求的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/csJ4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
曲线y=(x-1)(x-2)和x轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
已知连续型随机变量X的概率密度为又知E(X)=0,求a,b的值,并写出分布函数F(x)。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
证明:S(x)=满足微分方程y(4)-y=0并求和函数S(x).
曲线y=的斜渐近线为______.
曲线y=x(x一1)3(x一2)与x轴围成的图形的面积为()
随机试题
A.抑制肠内细菌生长,促进乳酸杆菌繁殖B.与游离氨结合,从而降低血氨C.与氨合成尿素和鸟氨酸,从而降低血氨D.被细菌分解成乳酸和乙酸,降低肠道的pHE.纠正氨基酸代谢不平衡,抑制假性神经递质形成支链氨基酸治疗肝性脑病的机制是
对急性肾小球肾炎最为合适的治疗措施是
对比增强磁共振血管造影所采用的序列是
A.医生对病人的呼叫或提问给予应答B.医生的行为使某个病人受益,但却给别的病人带来了损害C.妊娠危及母亲的生命时,医生给予引产D.医生给病人实施必要的检查或治疗E.医生满足病人的一切要求【2005年考试真题】
资产组合的收益-风险特征如图5-2所示,下列说法中错误的是( )。
对购房人资格的限制属于()。
云云在某超市第一次买到了一瓶过期的酸奶.第二次又买到了没有生产日期的糖果,她从此再也没有到那家超市买过东西,她觉得那里卖的都是劣质产品。以下哪项推理方式与题干相似?
SowhyisGooglesuddenlysointerestedinrobots?That’sthequestioneveryone’saskingafteritemergedthismonththatthein
Itissaidthatmorethanoneorganization______inthiswell-knowncriminalcase.
Allchildrenare【B1】______ofhavingfriends,althoughhighselfesteemreallyhelpsthem【B2】______,saysKathyNoll.Nollisthe
最新回复
(
0
)