首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设δ>0,f(x)在(一δ,δ)内恒有f"(x)>0,且|f(x)|≤x2,记I=,则有( ).
设δ>0,f(x)在(一δ,δ)内恒有f"(x)>0,且|f(x)|≤x2,记I=,则有( ).
admin
2021-01-14
40
问题
设δ>0,f(x)在(一δ,δ)内恒有f"(x)>0,且|f(x)|≤x
2
,记I=
,则有( ).
选项
A、I=0
B、I>0
C、I<0
D、不能确定
答案
B
解析
因为|f(x)|≤x
2
,所以f(0)=0,由|f(x)|≤x
2
,得0≤
≤|x|
由迫敛定理得f’(0)=0.
由泰勒公式得
f(x)=f(0)+f’(0)x+
,其中ξ介于0与x之间,
因为在(一δ,δ)内恒有f"(x)>0,所以I=
,选(B).
转载请注明原文地址:https://kaotiyun.com/show/cx84777K
0
考研数学二
相关试题推荐
[2012年]已知函数f(x)=,记a=f(x).若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
(Ⅰ)证明方程xn+xn一1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限.
(11年)设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求
已知α1=(1,2,1,1,1)T,α2=(1,—1,1,0,1)T,α3=(2,1,2,1,2)T是齐次线性方程组Ax=0的解,且R(A)=3,试写出该齐次线性方程组Ax=0。
设u=f(x,y,z,t)关于各变量均有连续偏导数,而其中由方程组确定z,t为y的函数,求
设f(χ)为非负连续函数,且满足f(χ)∫0χf(χ-t)dt=sin4χ求f(χ)在[0,]上的平均值.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
求曲线L:(a>0)所围成的平面区域的面积.
设A是4×5矩阵,ξ1=(1,-1,1,0,0)T,ξ2=(-1,3,-1,2,0)T,ξ3=(2,1,2,3,0)T,ξ4=(1,0,-1,1,-2)T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
随机试题
设=l,其中l为-定值且(l≠0,l≠1),则f(x)在点x=a处
药物作用的强弱取决于:药物作用持续的久暂取决于:
男孩,3岁,自幼人工喂养,食欲极差,有时腹泻。身高85cm,体重7500g,皮肤干燥、苍白,腹部皮下脂肪厚度约0.3cm,脉搏缓慢,心音较低钝。假设此患儿出现哭而少泪。眼球结膜有毕脱斑,则有
锅炉、压力容器、电梯、起重机械等特种设备及其安全附件、安全保护装置的制造、安装、改造单位,应当经国务院()许可,方可从事相应的活动。
按照《公约》的规定,一项发盘的内容必须十分肯定,只有具备()才算十分确定。
根据《个人贷款管理暂行办法》有关贷款资金支付管理的规定,采用贷款人受托支付的,贷款人应()。
近代,地方自治制的警察管理体制的代表国家是()。
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
有以下程序:#include<stdio.h>main(){inta=0,b=0,c=0,d=0;printf(’’%d,%d,%d,%d\n’’,a,b,c,d);}程序的运行结果是()。
A、Mark’strainhasleftearlier.B、Mark’strainhasbeendelayed.C、Mark’strainisoftenlate.D、Markislikelytomissthetra
最新回复
(
0
)