首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
admin
2019-07-19
110
问题
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
选项
答案
f(x)的定义域为(0,+∞),[*]=+∞. 由f
’
(x)=lnx+1=0,得驻点为x=[*]为f(x)的极小值点,也为最小值点,最小值为[*]. (1)当k>[*]时,函数f(x)在(0,+∞)内没有零点; (2)当k=[*]时,函数f(x)在(0,+∞)内有唯一零点x=[*]; (3)当0<k<[*]时,函数f(x)在(0,+∞)内有两个零点,分别位于[*]内.
解析
转载请注明原文地址:https://kaotiyun.com/show/d8c4777K
0
考研数学一
相关试题推荐
设有幂级数(1)求该幂级数的收敛域;(2)证明此幂级数满足微分方程y"一y=一1;(3)求此幂级数的和函数:
甲、乙两人相约于某地在12:00~13:00会面,设X,Y分别是甲、乙到达的时间,且假设X和y相互独立,已知X,Y的概率密度分别为求先到达者需要等待的时间的数学期望.
设函数f(x)连续且恒大于零,其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。(Ⅰ)讨论F(t)在区间(0,+∞)内的单调性;(Ⅱ)证明当t>0时,F(t)>
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设0<a<b,证明:
设A是3阶矩阵,β1,β2,β3是互不相同的3维列向量,且都不是方程组AX=0的解,记B=(β1,β2,β3),且满足R(AB)<R(A),R(AB)<R(B).则R(AB)等于()
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则R(A)=R(B);④若R
求函数在点P(一1,3,一3)处的梯度以及沿曲线x=一t2,y=3t2,z=一3t2在点P参数增大的切线方向的方向导数.
已知矩形的周长为2p,将它绕其中一边旋转一周而构成一旋转体(圆柱体),求该圆柱体的半径与高各为多少时,该圆柱体体积最大?
设在[0,1]上f″(x)>0,则f′(0),f′(1),f(1)—f(0)或f(0)—f(1)的大小顺序是()
随机试题
下列著名医家中被称为“攻邪派”的代表的是
贯彻评估科学性原则的主体是
死颌或早产多出现在
矿井下钻眼爆破工作的基本要求是()。
证券交易所不得从事()。
某导游员导游时,向旅游者强行介绍化妆品商人,并高价出售化妆品,根据《导游人员管理条例》,由旅游行政管理部门对()进行处罚。
睡眠有三忌:一忌睡前不可恼怒,二忌睡前不可饱食,三忌卧处不可当风。
遵义会议之所以是中共由幼稚走向成熟的标志,主要是因为这次会议()。
小偷甲在某商场窃得乙的钱包后逃跑,乙发现后急追。甲逃跑中撞上欲借用商场厕所的丙,因商场地板湿滑,丙摔成重伤。下列说法错误的有
SpeakerA;Howiseverythinggoingwithyou?SpeakerB:________
最新回复
(
0
)