首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,
admin
2019-07-16
31
问题
设有n元实二次型
f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,
其中a
i
(i=1,2,…,n)为实数.试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
选项
答案
由题设条件知,对任意的x
1
,x
2
,…,x
n
,有 f(x
1
,x
2
,…,x
n
)≥0 其中等号成立当且仅当 [*] 方程组(*)仅有零解的充分必要条件是其系数行列式不为零,即 [*] =1+(-1)
n+1
a
1
a
2
…a
n
≠0 所以,当1+(-1)
n+1
a
1
a
2
…a
n
≠0时,对于任意的不全为零的x
1
,x
2
,…,x
n
,有f(x
1
,x
2
,…,x
n
)>0,即当a
1
,a
2
…,a
n
≠(-1)
n
时,二次型f为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/dNJ4777K
0
考研数学三
相关试题推荐
设f(x)=则f(x)=_______.
设A为n阶矩阵,证明:其中n≥2.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且又f’(x)=-2x2+∫0xg(x-t)dt,则().
设D={(x,y)|0<x<1,0<y<1),变量(X,Y)在区域D上服从均匀分布,令令U=X+Z,求U的分布函数;
袋中有a个黑球和b个白球,一个一个地取球,求第k次取到黑球的概率(1≤k≤a+b).
设方程组AX=B有解但不唯一.求a;
计算二重积分ydσ,其中D是两个圆:x2+y2≤1与(x一2)2+y2≤4的公共部分.
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,,若f(x,y)在D内没有零点,则f(x,y)在D上().
随机试题
产品组合
国际服务贸易迅速发展的基本动因是()
关于RDW的描述,正确的是
需要和氟牙症进行鉴别诊断的是
无排卵性功能失调性子宫出血患者诊断性刮宫的病理结果,不可能出现的项目为
按照《FLDIC土木工程施工合同条件》规定,属于承包商权利与义务的是
根据《合伙企业法》的规定,( )应当经全体合伙人一致同意。
某部门组织一次活动,包括唱歌、聚餐和出游三个项目。其中,5人请病假没有参加任何活动,只参加1个项目的比没参加的人多,但不到10人,他们恰好可以平均分成3组;只参加2个项目的有十几个人,他们恰好可以平均分成4组;3个项目都参加的占到部门人数的一半,他们恰好可
在下列解决死锁的方法中,属于死锁预防策略的是
•Readthefollowingarticleaboutreal-timeinformationandthequestionsontheoppositepage.•Foreachquestion15-20,marko
最新回复
(
0
)