首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
admin
2018-05-25
86
问题
设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,A是n阶矩阵.证明:Aα
1
,Aα
2
,…,Aα
n
线性无关的充分必要条件是A可逆.
选项
答案
令B=(α
1
,α
2
,…,α
n
),因为α
1
,α
2
,…,α
n
为n个n维线性无关的向量,所以r(B)=n.(Aα
1
,Aα
2
,…,Aα
n
)=AB,因为r(AB)=r(A).所以Aα
1
,Aα
2
,…,Aα
n
线性无关的充分必要条件是r(A)=n,即A可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/BKX4777K
0
考研数学三
相关试题推荐
证明:
方程y(4)-2ˊˊˊ-3yˊˊ=e-3x-2e-x+x的特解形式(其中a,b,c,d为常数)是()
设函数f(x)有连续导数,F(x)=∫0xf(t)fˊ(2a-t)dt.证明:F(2a)-2F(a)=f2(a)-f(0)f(2a).
微分方程yˊˊ+yˊ+y=的一个特解应具有形式(其中a,b为常数)()
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
设f(x)连续,f(0)=1,则曲线∫0xf(x)dx在(0,0)处的切线方程是__________.
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fˊ(0)=0.证明:在[-1,1]内存在ξ,使得fˊˊˊ(ξ)=3.
设向量组(Ⅰ)α1,α2,…,αs线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(Ⅰ)α1,α2,…,αs线性表出,则向量α1,α2,…,αs,β1,β2,…,βs()
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值。
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
随机试题
当x>0时,证明:ex>1+x。
直方图是一种进一步深入研究和讨论质量问题的图示方法。()
单层钢结构安装中,基础顶面直接做为柱的支承面和基础顶面预埋钢筋或支座做为柱的支承面时,其支承面,地脚螺栓(锚栓)位置的允许偏差支承面标高为±3.0,地脚螺栓(锚栓)中心偏移为()。
下列关于雨水收集系统的说法中正确的是()。
根据《安全生产法》的规定,下列叙述中,( )不是对生产经营单位安全培训的要求。
首次放款的先决条件文件不包括()。
一位数学老师不能正确解释圆周率的含义,说明他缺乏()
那个电影大人还是小孩,可以看。
LeacockwasprobablythefirstCanadiantoqualifyasa"pro-AmericanBritishimperialist."Acolleague,Prof.JohnCulliton,sa
PowerLearningTherearenoshortcutsaboutlearning,buttherearesomeprovenstudyskillsthatcanreallyhelp.Theyinclude
最新回复
(
0
)