首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量α1-α2,α1-2α2+α3,1/4(α1-α3),α1+3α2-4α3,其中是相应的齐次线性方程组Ax=0的解向量的个数为( ).
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量α1-α2,α1-2α2+α3,1/4(α1-α3),α1+3α2-4α3,其中是相应的齐次线性方程组Ax=0的解向量的个数为( ).
admin
2021-07-27
42
问题
设α
1
,α
2
,α
3
均为线性方程组Ax=b的解,则下列向量α
1
-α
2
,α
1
-2α
2
+α
3
,1/4(α
1
-α
3
),α
1
+3α
2
-4α
3
,其中是相应的齐次线性方程组Ax=0的解向量的个数为( ).
选项
A、4
B、3
C、2
D、1
答案
A
解析
由Aα
1
=Aα
2
=Aα
3
=b可知A(α
1
-α
2
)=Aα
1
-Aα
2
=b-b=0,A(α
1
-2α
2
+α
3
)=Aα
1
-2Aα
2
+Aα
3
=b-2b+b=0,A[1/4(α
1
-α
3
)]=1/4(Aα
1
-Aα
3
)=1/4(b-b)=0,A(α
1
+3α
2
-4α
3
)=Aα
1
+3Aα
2
-4Aα
3
=b+3b-4b=0。因此这4个向量都是Ax=0的解,故选(A).
转载请注明原文地址:https://kaotiyun.com/show/dQy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设f(0)=0,则f(χ)在点χ=0可导的充要条件为【】
已知矩阵A相似于矩阵B=则秩(A-2E)与秩(A-E)之和等于【】
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
设常数k>0,函数在(0,+∞)内零点个数为()
对二元函数z=f(x,y),下列结论正确的是().
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
随机试题
A.阿司匹林B.华法林C.潘生丁D.普通肝素预防房颤栓塞并发症首选
口服避孕药物的作用原理为
关于职业健康安全初始评审的描述,正确的是()。
某县级市人口为25万人,中间高四周低,南、西、北侧均有河流通过,西侧有铁路客运站和货运站,南侧有一级公路。规划向南发展,并在铁路东西规划了工业和物流用地,结合北侧的水系规划了湿地公园,并有15公顷的广场用地。请论述规划存在哪些问题,为什么?
穿堤闸基础在人工开挖过程中,临近设计高程时,保护层暂不开挖的范围是()。
下列描述中不属于用来判断《专利法》所确定的实用新型的特征的是()。
依据一次能源的不同,发电厂可分为()。
公元前五世纪前后,东西方几乎同时出现的第一次思想文化高峰期,被称为人类的轴心时代。代表当时中两方文明杰出成就的标志性人物是()。
在国际单位制七个基本单位中,不包括下面哪个?()
行使管制权的主体是乡级以上人民政府的公安机关。
最新回复
(
0
)