首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f′(ξi)-f(ξi)=0(i=1,2);
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f′(ξi)-f(ξi)=0(i=1,2);
admin
2022-08-19
64
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:
(1)存在c∈(a,b),使得f(c)=0;
(2)存在ξ
i
∈(a,b)(i=1,2),且ξ
1
≠ξ
2
,使得f′(ξ
i
)-f(ξ
i
)=0(i=1,2);
(3)存在ξ∈(a,b),使得f″(ξ)=f(ξ);
(4)存在η∈(a,b),使得f″(η)-3f′(η)+2f(η)=0.
选项
答案
(1)令F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上连续,在(a,b)内可导,且F′(x)=f(x). 故存在c∈(a,b),使得 ∫
a
b
f(x)dx=F(b)-F(a)=F′(c)(b-a)=f(c)(b-a)=0,即f(c)=0. (2)令h(x)=e
x
f(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ
1
(a,c),ξ
2
∈(c,b),使得h′(ξ
1
)=h′(ξ
2
)=0, 而h′(x)=e
x
[f′(x)+f(x)]且e
x
≠0,所以f′(ξ
i
)+f(ξ
i
)=0(i=1,2). (3)令φ(x)=e
-x
[f′(x)+f(x))],φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ=(ξ
1
,ξ
2
)[*](a,b),使得φ′(ξ)=0, 而φ′(x)=e
-x
[f″(x)-f(x)]且e
-x
≠0,所以f″(ξ)=f(ξ). (4)令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
(a,c),η
2
∈(c,b),使得g′(η
1
)=g′(η
2
)=0, 而g′(x)=e
-x
[f′(x)-f(x)]且e
-x
≠0,所以f′(η
1
)-f(η
1
)=0,f′(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f′(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η,(η
1
,η
2
)[*](a,b),使得φ′(η)=0, 而φ′(x)=e
-2x
[f″(x)-3f′(x)+2f(x)]且e
-2x
≠0, 所以f″(η)-3f′(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/dVR4777K
0
考研数学三
相关试题推荐
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设bn为两个正项级数.证明:(1)若bn收敛,则an收敛;(2)若an发散,则bn发散.
设un>0(n-1,2,…),Sn=u1+u2+…+un.证明:收敛.
设a1=2,an+1=(n=1,2,…).证明:(1)an存在;(2)级数收敛.
设a1=1,an+1+=0,证明:数列{an}收敛,并求an.
设a0>0,an+1=(n=0,1,2,…),证明:an存在,并求之.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)有且仅有一个根.
随机试题
干扰细菌细胞壁合成的抗菌药是
善治热淋者善治膏淋者
A.一次常用量B.3日常用量C.15日常用量D.7日常用量根据《处方管理办法》为门诊患者开具的麻醉药品注射剂,每张处方为
关于食管的解剖以下描述不正确的是
保税货物和减免税货物均属于海关监管货物,但海关对前者实行时效管理,对后者实行核销管理。()
下列选项中属于挪用资金罪的行为的有()。
监理规划作为指导项目监理机构全面开展监理工作的技术文件,应经()审核批准。
某校班主任李老师在批改作业时,发现学生高某的作业本中夹了一封写有×××收的信件,李老师顺便拆封阅读了此信。这是高某写给一位女同学的求爱信,李老师看了十分生气,后来在班会上宣读了此信,同时对高某提出了批评。次日高某在家留了一张字条后离家出走。高某的家长找到李
未成年工:是指年满16周岁未满18周岁的劳动者。据此定义,可判定( )
成为抗日战争取得完全胜利的重要标志的是()。
最新回复
(
0
)