首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设bn为两个正项级数.证明: (1)若bn收敛,则an收敛; (2)若an发散,则bn发散.
设bn为两个正项级数.证明: (1)若bn收敛,则an收敛; (2)若an发散,则bn发散.
admin
2019-09-04
54
问题
设
b
n
为两个正项级数.证明:
(1)若
b
n
收敛,则
a
n
收敛;
(2)若
a
n
发散,则
b
n
发散.
选项
答案
(1)取ε
0
=1,由[*]=0,根据极限的定义,存在N>0,当n>N时,[*],即0≤a
n
<b
n
,由[*]b
n
收敛得[*]b
b
收敛(收敛级数去掉有限项不改变敛散性),由比较审敛法得[*]a
b
收敛,从而[*]a
b
收敛(收敛级数添加有限项不改变敛散性). (2)根据(1),当n>N时,有0≤a
b
<b
b
,因为[*]a
b
发散,所以[*]a
b
发散,由比较审敛法,[*]b
b
发散,进一步得[*]b
b
发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/kOJ4777K
0
考研数学三
相关试题推荐
设矩阵A=I-ααT,其中I是n阶单位矩阵,α是n维非零列向量,证明:当αTα=1时,A是不可逆矩阵.
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为________.
下列结论正确的是()
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论:(1)aij=AijATA=E且|A|=1(2)aij=-AijATA=E且|A|=-1.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:(1)A2:(2)A的特征值和特征向量;(3)A能否相似于对角矩阵,说明理由.
求A的特征值.判断a,b取什么值时A相似于对角矩阵?
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
设A和B是任意两个概率不为零的互不相容事件,则下列结论肯定正确的是()
计算下列积分:(1)∫-12[x]max{1,e-x}dx,其中,[x]表示不超过x的最大整数.(2)∫03(|x-1|+|x-2|)dx.(3)设求∫13f(x-2)dx.(4)已知求∫2n2n+2f(x-2n)e-xdx,n=2,3,….
随机试题
A.淋巴结结构破坏,大量单一肿瘤性细胞增生B.淋巴结结构破坏,多种炎细胞及R-S细胞增生C.淋巴结内瘤细胞排列成滤泡结构D.淋巴结结构破坏,大量原始粒细胞浸润滤泡性非霍奇金淋巴瘤
A.Ⅰ/甲B.Ⅰ/乙C.Ⅱ/甲D.Ⅱ/乙E.Ⅲ/丙阑尾穿孔术后切口化脓,应记录为
伴有左心室肥厚的高血压患者降压应首选
以下对城市排水体制的选择不合理的是()。
概算定额手册的内容包括()。
借贷记账法具有以下优点( )。
已知数列{an}的前n项和Sn=n2+kn(k∈N*),且Sn的最大值为8。(1)确定常数k,求an;(2)求数列{}的前n项和Tn。
(1)用热水洗去木屑(2)将纸从印版上揭起并阴干(3)把纸覆盖在版面上,用刷子轻轻刷纸(4)用刷子蘸墨汁均匀刷于版面上(5)将有字的一面贴在木板上,由刻字工逐字雕刻(6)将书稿写于纸上
Ononeoftheshelvesofanolddresser,incompanywitholdanddustysauce-boats,jugs,dishesandplates,andpaidbills,res
DearManager,Iamwritingtoyoutocomplainabouttheserviceinyourhotel.Ihadaterriblestayinroom2532ofOrange
最新回复
(
0
)