首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
admin
2018-05-21
51
问题
设A为m×n阶实矩阵,且r(A)=n.证明:A
T
A的特征值全大于零.
选项
答案
首先A
T
A为实对称矩阵,r(A
T
A)=n,对任意的X>0, X
T
(A
T
A)X=(AX)
T
(AX),令AX=α,因为r(A)=n,所以α≠0.所以 (AX)
T
(AX)=α
T
α=‖α‖
2
>0,即二次型X
T
(A
T
A)X是正定二次型.A
T
A为正定矩阵,所以A
T
A的特征值全大于零.
解析
转载请注明原文地址:https://kaotiyun.com/show/dZr4777K
0
考研数学一
相关试题推荐
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
A、P1P3AB、P2P3AC、AP3P2D、AP1P3B矩阵A作两次行变换可得到矩阵B,而AP3P2和AP1P3是对矩阵A作列变换,故应排除C,D。把矩阵A的第1行的2倍加至第3行,再将1,2两行互换得到矩阵B;或者把矩阵A的1,2两行互换后,再
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ).
具有特解y1=e—x,y2=2xe—x,y3=3ex的三阶常系数齐次线性微分方程是()
设A是n阶矩阵,|A|=2,若矩阵A+E不可逆,则A*必有特征值________.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足且ξ1=(1,2,1)T,ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系.(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;(Ⅱ)求出该二次型.
设二次型f(x1,x2,x3)=xTAx=x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,求k的取值范围.
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
随机试题
对于金融市场,下列说法正确的有()。
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f’(x)<0,则下列结论成立的是
A.频率指标B.构成指标C.相对比D.动态数列E.平均数变异系数是
氧增强比(OER)是指
A.申脉B.悬钟C.三阴交D.足临泣E.照海位于外踝高点上3寸,腓骨前腧穴是
女,74岁,间断感觉环境晃动伴恶心2天,共发作5次,每次持续10~15分钟。有高血压病史。发作时查体:水平眼震阳性,左侧指鼻试验阳性和跟—膝—胫试验阳性,闭目试验阳性。发作间歇期检查正常。双侧前庭功能试验正常。头颅CT无异常。可能的诊断是
A.鳞状化生B.角化珠C.胶样小体D.角质栓塞E.子囊牙源性角化囊肿()
对于企业来讲,资本最大限度增值可以表现为()。
填石路堤压实质量标准的控制指标宜采用()。
保荐机构应当保证所出具的文件( )。
最新回复
(
0
)