首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且φ’(x)=φ(x),φ(0)=0. (1)求方程y’+ysinx=φ(x)ecosx的通解; (2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且φ’(x)=φ(x),φ(0)=0. (1)求方程y’+ysinx=φ(x)ecosx的通解; (2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
admin
2018-09-25
39
问题
设φ(x)是以2π为周期的连续函数,且φ’(x)=φ(x),φ(0)=0.
(1)求方程y’+ysinx=φ(x)e
cosx
的通解;
(2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
选项
答案
本题考查微分方程的求解与解的讨论,尤其是(2)关于解的讨论,是考试中的重点,请复习备考的学生重视. (1)该方程为一阶非齐次线性微分方程,通解为 y=e
-∫sin xdx
[∫φ(x)e
cos x
e
∫sin xdx
dx+C]=e
cos x
[∫φ(x)e
cos x
.e
-cos x
dx+C] =e
cos x
[∫φ(x)dx+C]=e
cos x
[Ф(x)+C](C为任意常数). (2)因通解中
cos x
为2 π为周期的函数,故只需Ф(x+2π)=Ф(x)即可.因为Ф’(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C
1
,又Ф((0)=0,于是Ф(x)=∫
0
x
φ(t)dt.而 Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt, 所以,当∫
0
2π
φ(t)dt,时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/dcg4777K
0
考研数学一
相关试题推荐
求直线L:在平面∏:x-y+2z-1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
设曲线积分∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);(Ⅱ)计算沿
设z=f(t,et)dt,其中f是二元连续函数,则dz=__________.
设A、B是两个随机事件,且P(A)==___________.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X的概率密度为f(x)=.一∞<x<+∞,λ>0.试求A的矩估计量和最大似然估计量.
计算曲面积分I=(ax+by+cz+γ)2ds,其中∑是球面:x2+y2+z2=R2.
求线性方程组的通解,并求满足条件的所有解.
求函数f(x)=所有的间断点及其类型。
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(X)]没有间断点。
设f(x)为连续函数.求初值问题[*]的解y(x),其中a是正常数.
随机试题
淋巴细胞再循环中,哪项是错误的
把我国建设成为“四个现代化”社会主义强国的发展战略是
左心衰竭患者呼吸困难的机制不包括
位于对耳轮下脚下方后部,即耳甲10区的耳穴是()
申请人提供虚假材料申请注册的,不予注册并在()年内不得再次申请注册。
下列各项税金中,可能列入“主营业务税金及附加”科目核算的有()。
与个人投资者相比,机构投资者具有的条款有()。
景点景区导游的主要职责不包括()。
Itis,everyoneagrees,ahugetaskthatthechildperformswhenhelearnstospeak,andthefactthathedoessoinsoshorta
A、ShewillbemakingNannyMcPheeⅢ.B、Shewillcelebrateitforawholeyear.C、ShewillgotoEngland.D、Shewillwriteasong
最新回复
(
0
)