首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)是以2π为周期的连续函数,且φ’(x)=φ(x),φ(0)=0. (1)求方程y’+ysinx=φ(x)ecosx的通解; (2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设φ(x)是以2π为周期的连续函数,且φ’(x)=φ(x),φ(0)=0. (1)求方程y’+ysinx=φ(x)ecosx的通解; (2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
admin
2018-09-25
88
问题
设φ(x)是以2π为周期的连续函数,且φ’(x)=φ(x),φ(0)=0.
(1)求方程y’+ysinx=φ(x)e
cosx
的通解;
(2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
选项
答案
本题考查微分方程的求解与解的讨论,尤其是(2)关于解的讨论,是考试中的重点,请复习备考的学生重视. (1)该方程为一阶非齐次线性微分方程,通解为 y=e
-∫sin xdx
[∫φ(x)e
cos x
e
∫sin xdx
dx+C]=e
cos x
[∫φ(x)e
cos x
.e
-cos x
dx+C] =e
cos x
[∫φ(x)dx+C]=e
cos x
[Ф(x)+C](C为任意常数). (2)因通解中
cos x
为2 π为周期的函数,故只需Ф(x+2π)=Ф(x)即可.因为Ф’(x)=φ(x),所以Ф(x)=∫
0
x
φ(t)dt+C
1
,又Ф((0)=0,于是Ф(x)=∫
0
x
φ(t)dt.而 Ф(x+2π)=∫
0
x+2π
φ(t)dt=∫
0
x
φ(t)dt+∫
x
x+2π
φ(t)dt=Ф(x)+∫
0
2π
φ(t)dt, 所以,当∫
0
2π
φ(t)dt,时,Ф(x+2π)=Ф(x),即Ф(x)以2π为周期. 因此,当∫
0
2π
φ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/dcg4777K
0
考研数学一
相关试题推荐
求Pdx+Qdy在指定区域D上的原函数,其中{P,Q}=,D={(x,y)|x>0}.
设S是上半空间z>0中任意光滑闭曲面,S围成区域Ω,函数u=ρw(ρ)(ρ=在上半空间有连续的二阶偏导数,满足求w(ρ).
设函数f(x)在[0,π]上连续,且f(x)sinxdx=0,f(x)cosxdx=0.证明:在(0,π)内.f(x)至少有两个零点.
设y=f(x,t),且方程F(x,y,t)=0确定了函数t=t(x,y),求.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn).(Ⅰ)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性;(Ⅲ)应用切比雪夫不
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体的体积.
求cosx的带皮亚诺余项的三阶麦克劳林公式.
设二阶常系数线性微分方程y″+ay′+βy=γe2x的一个特解为y=e2x+(1+x)ex.求此方程的通解.
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
随机试题
简述种间竞争的竞争类型和竞争排除原理。
咨询公司编制的技术建议书中的工程咨询经验应重点介绍()。
关于成本加酬金合同的说法,正确的是()。
根据有关规定.开放式基金的认购费率不得超过申购金额的()。
(2001年考试真题)甲股份有限公司(以下简称甲公司)为增值税一般纳税企业,其销售的产品为应纳增值税产品,适用的增值税税率为17%,产品销售价款中均不含增值税额。甲公司适用的所得税税率为33%,产品销售成本按经济业务逐项结转。2000年度,甲公司
根据下面材料回答下列小题。截至2011年年末,T市城镇职工基本医疗保险参保人员474.52万人,城乡居民基本医疗保险参保人员498.30万人,城镇职工基本养老保险参保人员458.70万人,城乡居民基本养老保险参保人员97.80万人,失业保险参保职
2009年1-7月。全国粗钢产量31731万吨,同比增长2.9%,增速同比下降6.4个百分点。钢材产量37784万吨,同比增长7.6%,增速同比下降4.1个百分点。焦炭产量19048万吨,同比下降3.5%,上年同期的同比增长率为11.3%。铁合金产量11
中国特色社会主义理论体系
Itwasabusymorning,about8:30,whenanelderlygentlemaninhis80scametothehospital.Iheardhimsayingtothenurseth
Whatisimportantwhen...?Evaluatingperformance-Commitment-Colleagueassessment--
最新回复
(
0
)