首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ)计算沿
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ)计算沿
admin
2016-10-26
40
问题
设曲线积分 ∮
L
2[xφ(y)+ψ(y)]dx+[x
2
ψ(y)+2xy
2
-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.
(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);
(Ⅱ)计算沿L从点O(0,0)到M(π,
)的曲线积分.
选项
答案
(Ⅰ)由假设条件,该曲线积分与路径无关,将曲线积分记为∮
L
Pdx+Qdy,由单连通区域上曲线积分与路径无关的充要条件知,φ(y),ψ(y)满足[*],即 2[xtφ′(y)+ψ′(y)]=2xψ(y)+2y
2
-2φ(y). 由此得 x[φ′(y)-ψ(y)]=y
2
-φ(y)-ψ′(y). 由于x,y是独立变量,若令x=0,则y
2
-φ(y)-ψ′(y)=0.将之代回上式又得 φ′(y)-ψ(y)=0. 因此,φ(y),ψ(y)满足[*] 将第一个方程ψ(y)=φ′(y)代入第二个方程得φ″(y)+φ(y)=y
2
.这是二阶线性常系数非齐次方程,它的通解是φ(y)=c
1
cosy+c
2
siny+y
2
-2.由条件φ(0)=-2,φ′(0)=ψ(0)=1,得c
1
=0,c
2
=1,于是求得φ(y)=siny+y
2
-2,ψ(y)=φ′(y)=cosy+2y. (Ⅱ)求u使得du=Pdx+Qdy.把φ,ψ的关系式代入并整理得 Pdx+Qdy=φ(y)dx
2
+x
2
dφ(y)+ψ(y)d(2x)+2x[y
2
-φ(y)]dy =d[x
2
φ(y)]+ψ(y)d(2x)+2xdψ(y) =d[x
2
φ(y)+2xψ(y)]. 因此[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Q2u4777K
0
考研数学一
相关试题推荐
证明下列函数是有界函数:
行列式为f(x),则方程f(x)=0的根的个数为
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
设n阶矩阵A与B等价,则必有().
(1998年试题,一)设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为___________.
两容器盛盐水20L,浓度为15g/L,现以1L/min的速度向第一只容器注入清水(同时搅拌均匀),从第一只容器以1L/min的速度将溶液注入第二只容器,搅拌均匀后第二只容器以1L/min的速度排出,则经过________分钟第一只容器溶液浓度为原来的一
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
随机试题
下述关于二尖瓣关闭不全患者早期病理生理改变的叙述,正确的是
肾病综合征时可伴哪些血浆蛋白成分下降
诊断中央型肺癌,MRI在哪一方面不如CT
A、气随血脱B、气虚出血C、气血两虚D、瘀血出血E、气滞血瘀患者晨起后突然呕吐不止,面色苍白,四肢厥冷,脉微欲绝。其证型是
引起水体富营养化的原因主要是水中含有过高的
力F1、F2、F3、F4分别作用在刚体上同一平面内的A、B、C、D四点,各力矢首尾相连形成一矩形如图示,该力系的简化结果为()。
()应当在规划草案上报审批前,提出环境影响篇章或说明。
下列关于证券发行承销团承销证券的表述中,不符合证券法律制度规定的是()。
Ascientistwhowantstopredictthewayinwhichconsumerswillspendtheirmoneymuststudyconsumerbehavior.Hemust(1)_____
A、Theywillfindoutwhatitspeoplelike.B、Theywillknowhowtoliveinanotherway.C、Theywillknowthecountryanditspeo
最新回复
(
0
)