首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求向量组 α1=(1,1,4,2)T,α2=(1,-1,-2,4)T,α3=(-3,2,3,-11)T,α4=(1,3,10,0)T的一个极大线性无关组.
求向量组 α1=(1,1,4,2)T,α2=(1,-1,-2,4)T,α3=(-3,2,3,-11)T,α4=(1,3,10,0)T的一个极大线性无关组.
admin
2016-10-20
65
问题
求向量组
α
1
=(1,1,4,2)
T
,α
2
=(1,-1,-2,4)
T
,α
3
=(-3,2,3,-11)
T
,α
4
=(1,3,10,0)
T
的一个极大线性无关组.
选项
答案
(1)把行向量组成矩阵,用初等行变换化成阶梯形,有 [*] 所以,α
1
,α
2
是一个极大线性无关组. (2)把α
i
写成列向量,构成矩阵A,再作初等行变换化A为阶梯形,即 [*] 那么阶梯形矩阵中每一行第一个非零元所在的列对应的列向量α
1
,α
2
就是极大线性无关组. (3)由α
1
≠0,所以α
1
线性无 关.考察α
1
,α
2
,现α
2
≠kα
1
,可知α
1
,α
2
线性无关;再考察α
1
,α
2
,α
3
,对于方程x
1
α
1
+x
2
α
2
+x
3
α
3
=0,现有非零解,例如α
1
+5α
2
+2α
3
=0,所以α
1
,α
2
,α
3
线性相关,在极大线性无关组中应去掉α
3
.最后看α
1
,α
2
,α
4
,因为2α
1
-α
2
-α
4
=0,所以添加α
4
后仍线性相关,因此极大线性无关组是α
1
,α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/deT4777K
0
考研数学三
相关试题推荐
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
将函数分别展开成正弦级数和余弦级数.
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x12-10x22,在广告费用不限的情况下,求最优
计算下列各题:(I)由方程xy=yx确定x=x(y),求(Ⅱ)方程y-xey=1确定y=y(x),求y’’.(Ⅲ)
计算下列各题:
随机试题
糖尿病合并中度肾功能不全时应选用的降糖药为
下列哪项提示无排卵
在常规格式下,在Excel单元格中输入3/4,则单元格中的数据为()。
下列各项中,属于检查性控制的有()。
一列火车的车身长800米,行驶的速度是每小时60千米,铁路上有两座隧洞且长度相等。火车从车头进入第一个隧洞到车尾离开第一个隧洞用2分钟,从车头进入第一个隧洞到车尾离开第二个隧洞共用6分钟。两座隧洞之间相距多少千米?()
完成全面建成小康社会和实现现代化的历史性任务,重点和难点都在()。
发生重大突发事件时,根据安全第一的原则,首先应考虑将现场人员疏散至安全区域,以免造成更大的人员伤亡。以下关于火灾安全疏散的建议,错误的是()。
A、B、C三人从法学院毕业后,一人去了律师事务所,一人去了法院,一人去了检察院。甲、乙、丙三人做了以下猜测:甲:“A去了律师事务所,B去了法院。”乙:“A去了法院,C去了律师事务所。”丙:“A去了检察院,B去了律师事务所。”如果甲、乙、丙三人的猜测都只对了
AspartofeffortstoreduceilliteracyandpromoteEducationForAll(EFA)goals,theLagosStateAgencyforMassEducationha
WhatarethetwoseasoningsusedbymostAmericans?
最新回复
(
0
)