首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)=在x=1处可导,求曲线y=f(x)在点(1,f(1))处的切线方程和法线方程。
已知函数f(x)=在x=1处可导,求曲线y=f(x)在点(1,f(1))处的切线方程和法线方程。
admin
2018-05-25
40
问题
已知函数f(x)=
在x=1处可导,求曲线y=f(x)在点(1,f(1))处的切线方程和法线方程。
选项
答案
因为f(x)在x=1处可导,所以f(x)在x=1处连续,因此有[*]=e=f(1)=a+b,即a+b=e。 [*] 由于切点为(1,e),f’(1)=一e,则切线斜率为一e,故所求切线方程为y—e=一e(x一1),即 ex+y一2e=0。 法线斜率为一[*],所以法线方程为y—e=[*](x一1),即 x一ey+e
2
一1=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/dhg4777K
0
考研数学一
相关试题推荐
设函数f(x)连续,,则F’(x)=
袋中装有黑白两种颜色的球,黑球与白球个数之比为3:2.现从此袋中有放回地摸球,每次摸1个,记X为直至摸到黑、白两种颜色都出现为止所需要摸的次数,求E(X).
已知,求a,b的值.
设f(x,y)在平面区域D={(x,y)|x2+y2≤1}上有二阶连续偏导数,且l为D的边界正向一周.
二元函数f(x,y)=xy在点(e,0)处的二阶(即n=2)泰勒展开式(不要求写余项)为________.
设f(χ)在(-∞,+∞)内二阶可导且f〞(χ)>0,则χ>0,h1>0,h2>0,有
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设总体X的分布列为截尾几何分布P{X=l}=θk-1(1-θ),k=1,2,…,r,P{X=r+1}=θr,从中抽得样本X1,X2,…,Xn,其中有m个取值为r+1,求θ的极大似然估计.
设函数f(x),g(x)在x=x0有连续的二阶导数且f(x0)=g(x0),f′(x0)=g′(x0),f″(x0)=g″(x0)≠0,说明这一事实的几何意义.
设函数f(x)在x=x0处存在f′+(x0)与f′-(x0),但f′+(x0)≠f′-(x0),说明这一事实的几何意义.
随机试题
芽胞
患者,王华.女,22岁。外出返院,对病友称自己是王华的母亲,问病友“你看王华长的像我吗?”。随后对护士称她是王华的班主任来看王华。这一症状是【】
A.毛细血管血压增高B.血浆胶体渗透压降低C.组织液胶体渗透压增高D.毛细血管通透性增高右心衰竭发生组织水肿的主要机制是
A.6%B.8%C.13%D.15%教学医院药学专业技术人员中具有副高级以上药学专业职务任职资格的,应当不低于
低压螺旋式气柜施工时,其施工的关键工序是()。
一、注意事项1.申论考试是对考生阅读能力、综合分析能力、提出和解决问题能力以及文字表达能力的测试。2.参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”作答。4.请在答题卡上
教育学的研究任务是通过研究(),揭示教育规律,为教育实践提供理论依据。
在众多教育研究方法中,调查法的突出优点是能有效验证教育现象之间的因果关系。()
计算机硬件能够直接执行的是_______。Ⅰ.机器语言程序Ⅱ.汇编语言程序Ⅲ.硬件描述语言程序
Hespokeso______thatevenhisopponentswerewonoverbyhisarguments.
最新回复
(
0
)