首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=∫0xf0(t)dt/x, (1)补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续; (2)在(1)的条件下,证明f1(x)<f0
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=∫0xf0(t)dt/x, (1)补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续; (2)在(1)的条件下,证明f1(x)<f0
admin
2021-04-16
114
问题
设f
0
(x)是[0,+∞)上的连续的单调增加函数,函数f
1
(x)=∫
0
x
f
0
(t)dt/x,
(1)补充定义f
1
(x)在x=0的值,使得补充定义后的函数(仍记为f
1
(x))在[0,+∞)上连续;
(2)在(1)的条件下,证明f
1
(x)<f
0
(x)(x>0),且f
1
(x)也是[0,+∞)上的连续的单调增加函数;
(3)令f
n
(x)=∫
0
x
f
n-1
(t)dt/x,n=1,2,3,…,证明:对任意的x>0,极限
存在。
选项
答案
(1)因[*] 故补充定义f
1
(0)=f
0
(0),使得f
1
(x)在[0,+∞)上连续, (2)当x>0时,由积分中值定理,f
1
(x)=∫
0
x
f
0
(t)dt/x=f
0
(ζ),0<ζ<x,因f
0
(x)单调增加,故f
0
(ζ)<f
0
(x),即f
1
(x)<f
0
(x)(x>0)。 由(1)知,f
1
(x)在[0,+∞)上连续,又当x>0时,f’(x)=xf
0
∫
0
x
f
0
(t)dt/x
2
=[f
0
(x)-f
0
(ζ)]/x>0, 故f
1
(x)是[0,+∞)上的连续的单调增加函数。 (3)当x>0时,对于f
2
(x)=∫
0
x
f
1
(t)dt/x,仿(2)的处理方法,由积分中值定理,有 f
2
(x)=∫
0
x
f
1
(t)dt/x=f
1
(η)x/x=f
1
(η),0<η<x,由f
1
(η)单调增加,知f
1
(η)<f
1
(x),故f
2
(x)<f
1
(x)且f’
2
(x)=xf
1
(x)∫
0
x
f
1
(t)dt/x
2
=[f
1
(x)-f
1
(η)]/x>0,故f
2
(x)单调增加。 仿(1)的处理方法,在x>0时,有 [*] 于是可有f
n
(x)<f
n-1
(x)<…<f
0
(x),即f
n
(x)随n增大而减小,又由(2)知f
n
(x)是单调增加函数,且 [*] 即数列{f
n
(x)}单调减少且有下界,故对任意的x>0,极限[*]存在。
解析
转载请注明原文地址:https://kaotiyun.com/show/dpx4777K
0
考研数学三
相关试题推荐
设收敛,则()
函数f(x)=在点x=0处().
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量尼不可由α1,α2,α3线性表示,则对任意常数k,必有().
求不定积分
从抛物线y=x2—1的任意一点P(t,t2—1)引抛物线y=x2的两条切线。(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明该两条切线与抛物线y=x2所围面积为常数.
设随机事件A与B为对立事件,0<P(A)<1,则一定有()
设f(x)=sin(cosx),φ(x)=cos(sinx),则在区间内()
曲线的渐近线条数为()
[*]方法一:方法二:
设在部分球面x2+y2+z2=5R2,x>0,y>0,z>0上函数f(x,y,z)=lnx+lny+3lnz有极大值,试求此最大值,并利用上述结果证明对任意正数a,b,c总满足abc3≤275
随机试题
血源性肺脓肿最常见的致病菌为
银行或非银行金融机构在国家政策允许的范围内办理与房地产有关的资金筹集、融通和结算等信用活动称为()。
关于派驻监理人员的专业满足程度的说法,正确的是()。
项目后评价主要内容包括()。
我国发展理财服务的基础在于( )。Ⅰ.所有制变迁Ⅱ.居民多元理财渠道拓展Ⅲ.居民金融资产结构多样化Ⅳ.各类市场准入Ⅴ.寻租衍生性收益
下列各项中,不属于应计入损益的利得的是()。
根据下面材料,回答问题。虽然国产大豆与进口大豆的用途存在一定差异,但是二者之间仍然存在较大的替代性。2009年以来,我国国内大豆销售价格几乎都高于进口价格,且大豆没有关税配额限制,在四大粮食作物中,大豆进口量最大在所难免。一方面,大豆国际价格下降和人
到过巴黎的人,都会经过那条塞纳河,它犹如一条长长的玉带,将左岸埃菲尔铁塔,右岸的卢浮宫,以及被塞纳河怀抱的巴黎圣母院等法兰西的文化瑰宝串联在一起。曾经,其污染状况和我国的太湖、巢湖、滇池等淡水湖泊污染状况非常相似,湖水明显变臭,湖泊的富营养化加剧,水功能退
面向对象的程序设计语言是一种()。
A、Muscleschangemost.B、Fatpeoplechangeobviously.C、Fitterpeoplesuffermore.D、Peoplegetsickmoreeasily.C在Dr.Pino的文章中指
最新回复
(
0
)