首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=∫0xf0(t)dt/x, (1)补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续; (2)在(1)的条件下,证明f1(x)<f0
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=∫0xf0(t)dt/x, (1)补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续; (2)在(1)的条件下,证明f1(x)<f0
admin
2021-04-16
104
问题
设f
0
(x)是[0,+∞)上的连续的单调增加函数,函数f
1
(x)=∫
0
x
f
0
(t)dt/x,
(1)补充定义f
1
(x)在x=0的值,使得补充定义后的函数(仍记为f
1
(x))在[0,+∞)上连续;
(2)在(1)的条件下,证明f
1
(x)<f
0
(x)(x>0),且f
1
(x)也是[0,+∞)上的连续的单调增加函数;
(3)令f
n
(x)=∫
0
x
f
n-1
(t)dt/x,n=1,2,3,…,证明:对任意的x>0,极限
存在。
选项
答案
(1)因[*] 故补充定义f
1
(0)=f
0
(0),使得f
1
(x)在[0,+∞)上连续, (2)当x>0时,由积分中值定理,f
1
(x)=∫
0
x
f
0
(t)dt/x=f
0
(ζ),0<ζ<x,因f
0
(x)单调增加,故f
0
(ζ)<f
0
(x),即f
1
(x)<f
0
(x)(x>0)。 由(1)知,f
1
(x)在[0,+∞)上连续,又当x>0时,f’(x)=xf
0
∫
0
x
f
0
(t)dt/x
2
=[f
0
(x)-f
0
(ζ)]/x>0, 故f
1
(x)是[0,+∞)上的连续的单调增加函数。 (3)当x>0时,对于f
2
(x)=∫
0
x
f
1
(t)dt/x,仿(2)的处理方法,由积分中值定理,有 f
2
(x)=∫
0
x
f
1
(t)dt/x=f
1
(η)x/x=f
1
(η),0<η<x,由f
1
(η)单调增加,知f
1
(η)<f
1
(x),故f
2
(x)<f
1
(x)且f’
2
(x)=xf
1
(x)∫
0
x
f
1
(t)dt/x
2
=[f
1
(x)-f
1
(η)]/x>0,故f
2
(x)单调增加。 仿(1)的处理方法,在x>0时,有 [*] 于是可有f
n
(x)<f
n-1
(x)<…<f
0
(x),即f
n
(x)随n增大而减小,又由(2)知f
n
(x)是单调增加函数,且 [*] 即数列{f
n
(x)}单调减少且有下界,故对任意的x>0,极限[*]存在。
解析
转载请注明原文地址:https://kaotiyun.com/show/dpx4777K
0
考研数学三
相关试题推荐
1/2
设甲袋中有2个白球,乙袋中有2个红球,每次从各袋中任取一球,交换后放入另一袋,这样交换3次,求甲袋中白球数X的数学期望.
设X,Y为相互独立的随机变量,且X~N(1,2),Y服从参数λ=3的泊松分布,则D(XY)=________.
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中(a,b)为非零常数,则().
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1).使得(ξ)≥8.
函数f(x)=在下列哪个区间内有界.
f(x),φ(x)在点x=0的某邻域内连续,且当x→0时f(x)是φ(x)的高阶无穷小,则当x→0时的
微分方程x2y’+xy=y2满足初始条件y|x—1=1的特解为__________.
设f(x)满足。(Ⅰ)讨论f(x)在(-∞,+∞)是否存在最大值或最小值,若存在则求出;(Ⅱ)求y=f(x)的渐近线方程。
设有一个边长为a的质地均匀的正立方体Γ沉入一个体积很大的水池,假设水池的水深为a,并且立方体Γ的上表面恰好与水面重合,又设水的密度为ρ,立方体Γ的密度为kp,其中k>1为常数,重力加速度为g.试利用定积分方法计算将立方体Γ提升出水面需要做的功.
随机试题
动物见到食物就引起唾液分泌,这属于
易侵犯人体上部和肌腠的外邪是
A.咀嚼痛B.自发性隐痛,冷热刺激痛C.放射性锐痛D.阵发性电击样痛E.张口闭口痛下述疾病最可能表现出上述哪一种性质的疼痛急性根尖周炎
为了对各种不同类别的危险物质可能出现的事故严重度进行评价,根据()原则建立了物质子类别同事故形态之间的对应关系,每种事故形态用一种伤害模型来描述。
根据现行《建筑安装工程费用项目组成》(建标[2013]44号),教育费附加应计入建筑安装工程的()。
下面哪一种风险不是系统风险()。
我国最基层的群众性自治组织是()。
从A地到B地的道路如图所示,所有转弯均为直角,问如果要以最短距离从A地到达B地,有多少种不同的走法可以选择?()
现代科技中,()是通过受激发射而实现光波放大。
在我国,_________是专门的法律监督机关。
最新回复
(
0
)