首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内g(x)≠0;
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内g(x)≠0;
admin
2017-08-28
33
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
在开区间(a,b)内g(x)≠0;
选项
答案
假设存在点c∈(a,b),使g(c)=0,则f(x),g(x)分别在区间[a,c],[c,b]上用罗尔定理,得jε
1
∈(a,c),ε
2
∈(c,b),使得gˊ(ε
1
)=gˊ(ε
2
)=0,进而再在区间[ε
1
,ε
2
]上对gˊ(x)再用罗尔定理知了ε
3
∈(ε
1
,ε
2
),使得g〞(ε
3
)=0;但这与题设g〞(x)≠0矛盾 所以在开区间(a,b)内g(x)≠0
解析
转载请注明原文地址:https://kaotiyun.com/show/e2r4777K
0
考研数学一
相关试题推荐
证明方程lnx=在区间(0,+∞)内有且仅有两个不同实根.
96
按下列要求举例:(1)一个有限集合(2)一个无限集合(3)一个空集(4)一个集合是另一个集合的子集
设f(x),g(x)在(a,b)可微,g(x)≠0,且求证:存在常数C,使得f(x)=Cg(x)(x∈(a,b));
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(φ(2)=0.977,其中(x)是标准正态分布函数)
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>0)下的最大值是
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(Ⅰ)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.82),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为(设生产过程中方差不改变),在显著性水平为α=0.05下,检验生产过程是否正常.
求∫xarctandx.
随机试题
团队规范的核心是__________。
患儿女性,4岁,身高108cm,体重17kg。1天前开始发热(T39.2℃),咽稍痛,无咳嗽及吐泻,家长自行予以口服退热药治疗。患儿发热1天后出现腹泻,约2~3小时一次大便,量少,黄色黏液便,呕吐1次。查体:T39.0℃,P120次/min,R30
有关肌酸激酶(CK)的同工酶的叙述,不正确的是
可摘局部义齿模型设计,使用观测仪的目的是
工程监理人员发现工程设计不符合建筑工程质量标准或者合同约定的质量要求的,应当()。
计算机病毒实质是()。
常见的人格障碍类型不包括()。
在Access2010中,对数据库对象进行组织和管理的工具是
月亮本身并不发光,我们能看到月亮,太阳的光反射到了月球上。
Themostobviouspurposeofadvertisingistoinformtheconsumerofavailableproductsorservices.Thesecond(31)istosell
最新回复
(
0
)