首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
admin
2022-03-23
74
问题
设三元二次型f=x
T
Ax的二次型矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-1,ξ
3
=(0,1,1)
T
为对应于λ
3
=-1的特征向量。
若3维非零列向量α与ξ
3
正交,证明α是对应于λ
1
=λ
2
=1的特征向量。
选项
答案
由λ
1
=λ
2
=1,故A有两个线性无关的特征向量ξ
1
,ξ
2
对应于特征值1,且ξ
1
⊥ξ
3
,ξ
2
⊥ξ
3
,因为ξ
1
,ξ
2
,ξ
3
线性无关,但4个3维向量必线性相关,即α,ξ
1
,ξ
2
,ξ
3
线性相关,于是可令α=k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
。 若α与ξ
3
正交,则有 0=(α,ξ
3
)=k
1
(ξ
1
,ξ
3
)+k
2
(ξ
2
,ξ
3
)+k
3
(ξ
3
,ξ
3
)=k
3
(ξ
3
,ξ
3
)=k
3
||ξ
3
||
2
。 由于||ξ
3
||
2
=2≠0,得k
3
=0. 于是α=k
1
ξ
1
+k
2
ξ
2
,且α≠0,证得α是对应于λ
1
=λ
2
=1的特征向量。
解析
转载请注明原文地址:https://kaotiyun.com/show/eIR4777K
0
考研数学三
相关试题推荐
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
在最简单的全概率公式P(B)=P(A)P(B|A)+P()P(B|)中,要求事件A与B必须满足的条件是()
设常数λ>0,而级数收敛,则级数
设函数f(t)连续,则二次积分
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
试证明函数在区间(0,+∞)内单调增加.
设函数z=z(x,y)由方程F(x-ax,y-bz)=0所给出,其中F(u,v)任意可微,则=__________.
∫sinxdx/(1+sinx).
随机试题
鼻头干燥色黑如烟煤状多为
A.变量值间呈倍数关系的偏态分布B.表达同质计量资料的对称分布C.偏态分布资料或末端无界的资料,或频数分布不明资料D.表达同质计量资料的偏态分布E.变量值间无信数关系的正态分布
女,9岁,5天前突然右髋疼痛,并有高热。体温5℃,脉搏110次/分,白细胞22×109/L,中性98%.,血沉30mm/第一小时末。右髋关节肿胀,不敢活动,考虑为( )。
滴定分析指示剂有()。
对建设项目试生产与生产运营准备工作的咨询服务内容包括()。
关于建设工程等步距异节奏流水施工特点的说法,正确的是()。
地域管辖包括( )。
促进个体发展从潜在的可能状态转向现实状态的决定性因素是()
对于“既要改善人民生活,又要艰苦奋斗”有几种看法,你认为下列看法哪些是正确的?()
近代沙俄侵占了中国北方和西北方哪些领土?其重大危害是什么?
最新回复
(
0
)