首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
admin
2022-03-23
109
问题
设三元二次型f=x
T
Ax的二次型矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-1,ξ
3
=(0,1,1)
T
为对应于λ
3
=-1的特征向量。
若3维非零列向量α与ξ
3
正交,证明α是对应于λ
1
=λ
2
=1的特征向量。
选项
答案
由λ
1
=λ
2
=1,故A有两个线性无关的特征向量ξ
1
,ξ
2
对应于特征值1,且ξ
1
⊥ξ
3
,ξ
2
⊥ξ
3
,因为ξ
1
,ξ
2
,ξ
3
线性无关,但4个3维向量必线性相关,即α,ξ
1
,ξ
2
,ξ
3
线性相关,于是可令α=k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
。 若α与ξ
3
正交,则有 0=(α,ξ
3
)=k
1
(ξ
1
,ξ
3
)+k
2
(ξ
2
,ξ
3
)+k
3
(ξ
3
,ξ
3
)=k
3
(ξ
3
,ξ
3
)=k
3
||ξ
3
||
2
。 由于||ξ
3
||
2
=2≠0,得k
3
=0. 于是α=k
1
ξ
1
+k
2
ξ
2
,且α≠0,证得α是对应于λ
1
=λ
2
=1的特征向量。
解析
转载请注明原文地址:https://kaotiyun.com/show/eIR4777K
0
考研数学三
相关试题推荐
n维向量组α1,α2,…,αm(3≤m≤n)线性无关的充分必要条件是()
在全概率公式中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
已知,A*是A的伴随矩阵,若r(A*)=1,则a=()
设随机变量X1,…,Xn,…相互独立,记Yn=X2n—X2n—1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn:n≥1}()
X1,X2,…,Xn为X的简单随机样本,且随机变量X的概率密度函数为求未知参数α的矩估计量和最大似然估计量。
过曲线y=(x≥0)上的一点A作切线,使该切线与曲线及x轴所围成的平面区域的面积为,所围区域绕x轴旋转一周而成的体积为.
求幂级数的收敛区间与和函数f(x).
把下列函数展开傅里叶级数:(1)f(x)=sinx/3(-π≤x≤π);(2)f(x)=|sinx|(-π≤x≤π)(3)f(x)=cosλx(-π≤x≤π,0<λ<1);(4)
设f(x)为连续函数,(1)证明:∫0πxf(sinx)dx=∫0πf(sinx)dx=f(sinx)dx;(2)证明:∫02πf(|sinx|)dx=f(sinx)dx;(3)求∫0π
随机试题
对严重烧伤、大出血、休克患者采用静脉输液治疗的目的是
焊接过程中需要焊工调节的参数是()。
皮亚杰认知发展学说中形式运思期的主要特点是
A.行政许可B.行政处罚C.行政诉讼D.行政复议E.行政处分行政机关工作人员滥用职权、玩忽职守作出决定的,可撤销
甲公司2008年年初对A设备投资1000000元,该项目2010年年初完工投产,2010年、2011年、2012年年末预期收益分别为200000元、300000元、500000元,银行存款利率为12%。(计算结果取整数)按复利计算,并按季计息
王某向李某借款1万元,李某当场向王某交付现金1万元,王某向李某出具借条一份,张某在该借条上签字,后王某没有按时还钱,李某将王某和张某同时起诉至法院,要求王某还钱,并要求张某承担连带责任。关于张某的责任,下列说法正确的是:
(2008年第6题)下列关于文史知识的表述,错误的一项是:
下列程序的运行结果是( )。 #include<iostream.h> voidfun(int &a,int b=3) { static int i=2; a=a+b+i; i=i+a; } void ma
Doesthewomanagreetohelptheman?
Itisdifficulttoconceivehow,evenforthosepeoplewelldisposedtorulethemselves,theattempttoachievehappinessshould
最新回复
(
0
)