首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
admin
2022-03-23
81
问题
设三元二次型f=x
T
Ax的二次型矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-1,ξ
3
=(0,1,1)
T
为对应于λ
3
=-1的特征向量。
若3维非零列向量α与ξ
3
正交,证明α是对应于λ
1
=λ
2
=1的特征向量。
选项
答案
由λ
1
=λ
2
=1,故A有两个线性无关的特征向量ξ
1
,ξ
2
对应于特征值1,且ξ
1
⊥ξ
3
,ξ
2
⊥ξ
3
,因为ξ
1
,ξ
2
,ξ
3
线性无关,但4个3维向量必线性相关,即α,ξ
1
,ξ
2
,ξ
3
线性相关,于是可令α=k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
。 若α与ξ
3
正交,则有 0=(α,ξ
3
)=k
1
(ξ
1
,ξ
3
)+k
2
(ξ
2
,ξ
3
)+k
3
(ξ
3
,ξ
3
)=k
3
(ξ
3
,ξ
3
)=k
3
||ξ
3
||
2
。 由于||ξ
3
||
2
=2≠0,得k
3
=0. 于是α=k
1
ξ
1
+k
2
ξ
2
,且α≠0,证得α是对应于λ
1
=λ
2
=1的特征向量。
解析
转载请注明原文地址:https://kaotiyun.com/show/eIR4777K
0
考研数学三
相关试题推荐
设f(x)=下述命题成立的是()
在曲线y=(x-1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y>0),则区域D绕x轴旋转一周所成的几何体的体积为().
由曲线y=(0≤x≤π)与x轴围成的平面图形绕x轴旋转一周而成的旋转体体积为()
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
设随机变量X的绝对值不大于1,P(X=-1)=,P(X=1)=.在事件{-1<X<1}出现的条件下,X在区间(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比.试求X的分布函数F(χ)=P(X≤χ).
[2014年]求幂级数的收敛域及和函数.
设f(x)在[0,1]有连续导数,且f(0)=0,令M=,则必有()。
设二维随机变量(X,Y)的概率密度为求:方差D(XY);
求y=f(x)=的渐近线.
求∫013x2arcsinxdx.
随机试题
水力、水爆清砂等废水最简单的处理方法是(),上部的清水就可以循环使用。
我国失业保险基金构成不包括()
甲、乙二人共有一幢房屋,由两人轮流居住,甲在居住期间,房屋因地基不牢倒塌,造成丙损害。()。
不符合ADHD的诊断标准的有
关于先张法预应力钢筋张拉施工的说法,错误的是()。
下列关于中国的中央银行的说法,错误的是()。
16PF在实施过程中,要注意的事项是()。
下列选项与第三次科技革命密切相关的是()。
下列关于农耕世界与游牧世界文明特征的叙述中,不正确的是()。
一主一从式SPI连接示意如下图所示。主机SPI的4根信号线的名称已在图中标出,为保证主机与从机之间的正确连接及系统正常工作,图中从机的①、②、③、④的信号名称分别应该是什么?()。
最新回复
(
0
)