首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
admin
2021-02-25
68
问题
设线性无关的函数y
1
,y
2
与y
3
均为二阶非齐次线性微分方程的解,C
1
和C
2
是任意常数,则该非齐次线性方程的通解是( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
B、C
1
y
1
+C
2
y
2
-(C
1
+C
2
)y
3
C、C
1
y
1
+C
2
y
2
+(1-C
1
-C
2
)y
3
D、C
1
y
1
+C
2
y
2
-(1-C
1
-C
2
)y
3
答案
C
解析
本题考查线性微分方程解的结构.线性微分方程的解主要是满足“叠加原理”.非齐次线性方程的通解等于其对应的齐次方程的通解再加上本身的一个特解.
如果设该二阶非齐次线性微分方程的形式为
y“+p(x)y‘+q(x)y=f(x).
由题意,y
1
,y
2
,y
3
均为其线性无关的解,则
y=C
1
y
1
+C
2
y
2
+y
3
是y“+p(x)y‘+q(x)y=3f(x)的解,故A选项不正确. y=C
1
y
1
+C
2
y
2
-(C
1
+C
2
)y
3
=C
1
(y
1
-y
3
)+C
2
(y
2
-y
3
)是方程对应的齐次方程的解,故B选项不正确. y=C
1
y
1
+C
2
y
2
+(1-C
1
-C
2
)y
3
=C
1
(y
1
-y
3
)+C
2
(y
2
-y
3
)+y
3
,
其中C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)为齐次方程的通解,y
3
为原方程的一个特解,故C选项正确.
y=C
1
y
1
+C
2
y
2
-(1-C
1
-C
2
)y
3
=C
1
(y
1
+y
3
)+C
2
(y
2
+y
3
)-y
3
是y“+p(x)y‘+q(x)y=(2C
1
+2C
2
-1)f(x)的解,
综上讨论,应选C.
转载请注明原文地址:https://kaotiyun.com/show/eO84777K
0
考研数学二
相关试题推荐
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
微分方程xy”-y’=x的通解是_______.
设函数y=f(x)的增量函数△y=f(x+△x)-f(x)=+o(△x),且f(0)=π,则f(-1)为().
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是().
微分方程y”-2y’﹢y=ex的特解形式为()
设f(χ)二阶连续可导,g(χ)连续,且f′(χ)=lncosχ+∫0χg(χ-t)dt,=-2,则().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
随机试题
将100mm×100mm×10mm的角钢用角焊缝搭接在一块钢板上,见图3一1。受拉伸时要求与角钢等强度,试计算接头的焊缝长度L1、L2应该是多少?
影响评价结果真实性的选择偏倚因素是
典型消化性溃疡的临床特点是慢性过程、_______和_______。
不宜做眼及眼眶CT扫描的是
大黄附子汤的功用是()
下列隔离衣使用的要求,正确的是()。
张某为甲合伙制房地产经纪机构(以下简称甲机构)的注册房地产经纪人。王某因举家南迁将自己的住房委托甲机构销售。在甲机构授权下,张某与王某签订了房地产经纪服务合同,合同约定甲机构为王某提供订立房地产交易合同的机会和交易媒介服务,王某向甲机构支付佣金。张某接受业
“勿以恶小而为之,勿以善小而不为”体现的哲学道理是()。
电脑的出现,在很大程度上改变了我们的生活。坐在电脑前打字、浏览,越来越多地替代了提笔写字、捧书阅读。但电脑在带来便捷的同时,也对传统文化造成了强大的冲击,即便是一些优秀的传统文化也离我们渐行渐远。书法是中华文化的瑰宝,是民族精神的体现,但在电脑面前,练习毛
WhatworriesmeaboutthestenchcomingfromCorporateAmericaisnotitsimpactontheeconomy,becauseAmerica’sresiliencyis
最新回复
(
0
)