首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
admin
2021-02-25
54
问题
设线性无关的函数y
1
,y
2
与y
3
均为二阶非齐次线性微分方程的解,C
1
和C
2
是任意常数,则该非齐次线性方程的通解是( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
B、C
1
y
1
+C
2
y
2
-(C
1
+C
2
)y
3
C、C
1
y
1
+C
2
y
2
+(1-C
1
-C
2
)y
3
D、C
1
y
1
+C
2
y
2
-(1-C
1
-C
2
)y
3
答案
C
解析
本题考查线性微分方程解的结构.线性微分方程的解主要是满足“叠加原理”.非齐次线性方程的通解等于其对应的齐次方程的通解再加上本身的一个特解.
如果设该二阶非齐次线性微分方程的形式为
y“+p(x)y‘+q(x)y=f(x).
由题意,y
1
,y
2
,y
3
均为其线性无关的解,则
y=C
1
y
1
+C
2
y
2
+y
3
是y“+p(x)y‘+q(x)y=3f(x)的解,故A选项不正确. y=C
1
y
1
+C
2
y
2
-(C
1
+C
2
)y
3
=C
1
(y
1
-y
3
)+C
2
(y
2
-y
3
)是方程对应的齐次方程的解,故B选项不正确. y=C
1
y
1
+C
2
y
2
+(1-C
1
-C
2
)y
3
=C
1
(y
1
-y
3
)+C
2
(y
2
-y
3
)+y
3
,
其中C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)为齐次方程的通解,y
3
为原方程的一个特解,故C选项正确.
y=C
1
y
1
+C
2
y
2
-(1-C
1
-C
2
)y
3
=C
1
(y
1
+y
3
)+C
2
(y
2
+y
3
)-y
3
是y“+p(x)y‘+q(x)y=(2C
1
+2C
2
-1)f(x)的解,
综上讨论,应选C.
转载请注明原文地址:https://kaotiyun.com/show/eO84777K
0
考研数学二
相关试题推荐
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
微分方程xy”-y’=x的通解是_______.
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是().
设f(t)为连续函数,且∫0χtf(2χ-t)dt=ln(1+χ2),f(1)=1,则∫12f(χ)dχ=_______.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
微分方程y”-2y’﹢y=ex的特解形式为()
设f(χ)二阶连续可导,g(χ)连续,且f′(χ)=lncosχ+∫0χg(χ-t)dt,=-2,则().
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
设,已知线性方程组Ax=b存在2个不同的解.(1)求λ,a;(2)求方程组Ax=b的通解.
随机试题
仲裁的特点主要有()
法约尔认为企业除管理外的经营活动包括()
A.凝固性坏死B.干酪样坏死C.液化性坏死D.脂肪坏死乙型脑炎时出现
A.碳酸锂B.奎宁C.白消安D.卡比马唑E.苯妥英钠促进粒细胞生成的药是
子宫肌瘤与哪项疾病鉴别相对无关
(2007年)在不同进制的数中,下列最小的数是()。
公安机关属于国家行政机关,与一般行政机关完全相同,因此人民警察队伍管理按照公务员制度实行即可。()
()是一部杰出的浪漫主义诗集,是我国新文学史上第一部不朽的诗歌作品,开了一代新诗风,奠定了新诗运动的基础。
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”作答。二、给定资料1
将考生文件夹下MUNLO文件夹中的文件KUB.DOC删除。
最新回复
(
0
)